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COMPUTING THE PROBABILITY OF HASH TABLE / URN OVERFLOW 
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Computer Science Department 
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East Lansing, Michigan 48824-1027 
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ABSTRACT 

We analyze the probability of a random distribution of n balls into m urns of size b result- 

ing in no overflows. This solves the computational problem associated with a classical combina- 

torial extreme-value distribution. The problem arose during the analysis of a technique, called 

perfect hashing, for organizing data in computer files. The results and techniques presented can 

be used to solve several problems in the analysis of hashing techniques. 

1. INTRODUCTION 

Consider a traditional urn model. There are n balls to be randomly distributed into m urns, 

each urn having a capacity of at most b balls. Let each ball be randomly tossed into an urn so that 

the probability of a ball falling into a particular urn is l/m and independent of the outcome of 

other tossings. If an urn already contains b balls, any subsequent ball tossed into the urn is said to 

overflow. Let P (n ,m ,b )  denote the probability of a random distribution of n balls into m urns of 

size b resulting in no overflows. 

One of the combinatorial extreme-value problems considered by David and Barton and Bar- 

ton and David is as follows[l, 31. When n bans are randomly distributed among rn urns, let X 

denote the number of balls in the urn(or urns) containing the maximum number of balls. Then the 

cumulative probability distribution of X, pr(X I b ) is precisely P (n ,m ,b )  defined above. Barton 

Copyright O 1987 by Marcel Dekker, Inc. 
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3344 RAMAKRISHNA 

and David consider several similar combinatorial exneme-value problems. One common feature 

of these problems is that "the probability distribution functions are difficult to evaluate even for 

moderate sized samples"[l, p 631. However, "there are a number of problems in which its 

(P(n ,m ,b))  enumeration is of interestm[3, p 2211. In this paper we solve the classical computa- 

tional problem by giving a simple recurrence relation which enables easy and exact computation 

of P (n ,m ,b). We also study how the values of P (n ,m ,b )  computed using a simple approxima- 

tion approach the exact values of P (n ,m ,b) .  

Kolchin, Sevast'yanov and Chistyakov have given some results about the asymptotic 

behavior of P (n ,m , b )  [5, pp 96-1 151. However, to the best of our knowledge the computational 

problem we have addressed in this paper has not been solved so far. We encountered this classi- 

cal problem while analyzing perfect hashing. Hashing refers to a class of techniques for organiz- 

ing files stored in computer memory. Exact and efficient computation of P (n ,m ,b) was essential 

for the analysis. The results and techniques presented in this paper also enable us to answer open 

problems in the analysis of some other hashing schemes (see sections 6 and 7). 

2. BACKGROUND 

Let F (n ,m ,b )  denote the number of ways in which n balls can be distributed among m urns 

so that no urn receives more than b balls (assume n S mb). It follows that 

For b = 1 the expression for F(n ,m ,b )  is trivial. When b > 1 the analysis is difficult. David and 

Barton and Barton and David give the following expression for F (n ,m , b )  [l ,  31: 

where f i denotes the number of balls in the i th urn and the summation is over all possible combi- 

nations of f i  such that iSfi = n .  An example makes the above expression clear. F ( 4 . 3 3  
a e 

denotes the number of ways in which 4 balls can be distributed among 3 urns, each capable of 

holding at most 2 balls: 

David and Barton (1962) point out " F ( N )  [= F(n ,m,b)] does not posses a simple fomH[3, p 

2211. The formula is not suited for numerical evaluation of F(n,m,b).  There is a generating 

function used to compute F (n ,m ,b): 

F (n ,m ,b) = Coefficient of (xnln !) in G6 ( x )  m, where [ I 
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HASH TABLEIURN OVERFLOW 3345 

Computations using the above generating function involve the handling of very large integers (of 

the order of b !" ). This is neither suitable for hand calculations nor for computer evaluation of 

P (n ,m ,b), even for moderate values of parameters. Evaluation of F (n ,30,30) took several hours 

of computer time on the M ~ E  symbolic algebra system(capab1e of handling very large 

integers) running on a VAX-780 processor[2]. For larger values of m and b ,  it is prohibitively 

expensive to compute F (n ,m ,b) using the generating function. It appears that the computational 

complexity can be reduced to some extent using Fast Fourier Transforms (In this regard, there is a 

note by Monahan appearing at the end of this paper). In the following sections we present an 

efficient and simple solution to the problem. A procedure is given which enables computation of a 

table of P (n ,m ,b) values, having approximately mn 12 entries, using only six arithmetic opera- 

tions per each value. 

3. RECURRENCE RELATION FOR P (n ,m ,b) 

Suppose that n balls have already been randomly disfributed among m urns and no 

overflow has occurred. Let the next ball, the (n+l)st, be tossed into a randomly chosen urn. We 

use R(n+l,m,b) to denote the conditional probability that the (n+l)st ball will not overflow. 

Then R (n+l,m ,b) can be expressed as 

The (n+l)st ball will overflow if and only if it falls into an urn already full (i.e., one con- 

taining b balls). The probability of this event is the same as the probability of an arbitrary but 

fixed um being full. Hence, the probability of the (n+l)st ball overflowing can be expressed as 

The numerator represents the total number of combinations resulting in the fixed urn being full. 

The term (8) represents the number of ways in which b balls (those in the full urn) can be chosen 

from n balls. The number of ways in which the remaining (n-b) balls can be distributed among 

the other (m-1) urns is given by F(n-b,m-1,b). By combining equations (I), (2) and (3) we 

obtain 

To evaluate P(n JTI ,b) using (4) we need to calculate P (i jb) for j = 1,2,. . . ,m, and 

i = 12, . . . ,n-(m-j)b+l. It should be noted that similar computations are required implicitly by 

the generating function approach. Although the above recurrence relation looks complicated, 

involving large numbers of the order of mu, ihe computation can be organized so that the evalua- 

tion of each new value of P (i j , b )  requires only 6 arithmetic operations. Appendix A contains a 
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TABLE I. Cumulative probability disfribution, P (400,30,b) 

RAMAKRISHNA 

I P ( b )  0.7571 0.8675 0.9321 0.9670 0.9846 0.9931 0.9970 
b 29 30 3 1 32 33 

P (n,m ,b) 0.9988 0.9995 0.9998 0.9999 1.0000 

s e  (suitable for hand calculation or computer evaluation) to compute a table of P (n ,m ,b) 

for a fixed b and 1 < m 5 m,,,, 1 S n 5 bm,.,. The procedure is based on (4) and the following 

identity: 

The iterations start with the initializations P (n ,m ,b) = 1.0, for 1 I n I b , 1 2 m 2 m,,,. Denote 

the value of (a)- by term . Initially when n is equal to b ,  the value of term is limb. 

Each subsequent value of term can be obtained by multiplying the previous value of term by 

(%)(*) and hence a total of 6 arithmetic operations are sufficient to compute the next 

value of P(n,m,b). Thus for a given value of m and b the evaluation of all values of 

P (i j ,b),  j = 1,2, . . . ,m , and i = 1,2, . . . ,n-(m-j)b+l requires a total number of arithmetic 

operations proportional to nm, and hence the procedure is optimal. For example, computation of 

P (n ,30,30) requires only a few seconds of computer time. Appendix A also contains a brief dis- 

cussion of the numerical stability of the computation. Using the procedure, P (n,m ,b) can be 

computed even for large values of the parameters. For example, computation of 

P (5000,500,20) = 0.4520 poses no problem and requires approximately 70 seconds of VAX-780 

computer time. 

Table I shows the cumulative probability distribution of X, pr(X 2 b 1. The random vari- 

able X denotes the number of balls in the um(urns) containing the largest number of balls when 

400 balls are randomly distributed into 30 urns. 

4. RECURRENCE RELATION FOR R (n ,m ,b) 

Consider the computation of R(n ,m,b), the conditional probability of the nth ball not 

overflowing given that n-1 balls have been distributed into m urns of size b and none have 

overflowed (such computations are required in some applications [lo]). It is sthighforward to 
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HASH TABLEIURN OVERFLOW 3347 

compute R(n,m,b) which is equal to the ratio P(n,m,b)/P(n-l,m,b), when the values of 

P (n ,m ,b) is much larger than the machine-epsilon (see the note at the end of Appendix A for an 

explanation of machine-epsilon). Roundoff errors in the value of R (n ,m ,b) so computed become 

severe as n approaches mb, when the corresponding P(n ,m ,b) values approach the machine- 

epsilon. It is interesting to note that the lowest nonzero value of R (n ,m ,b) is l/m , large com- 

pared to the machine-epsilon. (When mb-1 balls have been distributed and none have 

overflowed, precisely m-1 urns must be full and the other urn must contain b-1 balls. It then fol- 

lows thatR(mb,m,b)=l/m. When n >mb,R(n,m,b)=O andR(n,m,b)=l  for n <b) .  On 

the other hand, the corresponding P (mb ,m ,b) = #f$- is extremely small. of the order of 

(mlbb-I)* . (For the present assume that the range of m , b we are interested in is 5 to f 00.) 

Thus, although the error in P (n ,m ,b) may not be significant when its value is very small(typical1y 

of the order of lV1O), the error in the value of R (n,m,b) computed using (4),(5) and (2) is 

extremely large (even the values computed using double precision arithmetic are completely 

meaningless). This computational problem can be overcome by using a reverse recurrence rela- 

tion for R(n,m,b). Since we know the value of R(n ,m,b) when n = mb, the idea is that we 

should be able to overcome the computational difficulty by proceeding backwards starting from 

n =mb. 

Replacing n by n -1 in (4) and dividing throughout by P (n -1 ,m ,b ) we obtain 

Using (2), the identity (5) and eliminating P (n ,m ,b) from the above equation we obtain the fol- 

lowing recurrence relation. 

S ta r t ingf romn=mb,R(mb,m,b)=l lm,R(n ,m,b)  forn =mb-1,mb-2, . . . ,  b can becom- 

puted using (6). The numerical stability problems mentioned before are not encountered when 

using this recurrence relation for computing R (n ,m ,b). Since P (n ,m ,b) = 

good heuristic to compute P (n ,m ,b) and R (n ,m ,b) using (4) for small values of n , and using (6) 

when n approaches mb . 

5. APPROXIMATE FORMULA 

In this section we obtain an approximate, closed form expression for P (n ,m ,b). The main 

approximation is to assume that urns overflow independently when balls are tossed randomly into 

the urns. 

Let Pov(a,b) denote the probability of an arbiuaty but fixed urn overllowing when 

n = a d ,  0 $a 5 1, balls are randomly tossed into m urns, each having a capacity of b balls. 
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3348 RAMAKRISHNA 

Using the Poisson approximation of the binomial distribution y e  can express Pov as the following 

sum: 

Pov ( , b )  = '$ 
i- +l 

where b a = n lm is the average number of balls per urn (This is a good approximation for 

moderate values of b a) [4]. For large values of b , and a not too close to 1.0, the summation can 

be approximated as follows: 

Under the assumption that urns overflow independently of each other, P (n ,m ,b) expressed as a 

function of a, m and b is given by 

P (n ,m ,b) = (1 - Pov (a,b))" = e-" Pov(a*b).  (8) 

If a is small compared to 1, the term & in (7) above evaluates to approximately 1. 

The corresponding P (n ,m ,b) given by (8) is precisely same as the result obtained by David and 

Barton [3, pp 238-2391 11, pp 73-74]. 

Figure I is a plot of the exact and the approximate value of P (n ,m ,b). The parameter b is 5 

for all the curves and there is one pair of curves for each m of 5, 10, 20,40 and 80. We observe 

that (8) is a good approximation for P (n ,m ,b) when m is above 80 (for the case of b = 5). For 

larger values of b , (8) begins to be a good approximation at a lower value of m . 
The approximation for P (n ,m ,b) given by (7) and (8) also helps us understand the effect of 

increasing m on the value of a to keep P ( a m  ,b) a constant at a given value. In figure I, every 

small percentage drop in a allows a doubling of m to keep P (am ,b) constant at 0.2, say. Con- 

sider equation (7) and take its derivative: 

Pov ( a h  ) [b ( l io  - I ) ]  (for large b and a not too near 1 .O) 

This implies that a small change in a results in magnified, by a factor of b (lla-1), change in the 

value of Pov(a,b). It follows from (8) that a small drop in a is sufficient to compensate a Iarge 

increase in m to maintain the value of P (a,m ,b) constant at a required value. 
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HASH TABLEIURN OVERFLOW 

FIG. I. Comparison of exact and approximate values of P (n ,m ,b). 
Urn capacity (b) : 5, Number of urns (m) : 5,10,20,40,80 
Solid lines : P (n ,m ,b) computed using (8) 
Dashed lines : exact values of P (n ,m ,b ) 

6.  APPLICATION TO PERFECT HASHING 

Consider a set of n integers I = {x 1 JZ, . . . J,}, I c {1,2, . . . N } .  Typically M is very 

large, of the order of 10lO. Each integer is referred to as a key.  The problem is to store the n keys 

in m pages of computer memory, each page having a capacity to hold up to b keys, n I mb. In 

practice each key has some additional information associated with it. The key and its associated 

information is called a record and the set of records stored is called a file. The keys(records) in 

the file are to be organized in such a way that any given key x (and hence the associated record) 

can be efficiently retrieved. A hashing function h ,  h :  I + [Im], assigns each key an address in 

the range 1, . . . ,m. Given a key xi we compute h (xi) and store the record on that page. The 

record is said to hash into page h(xi). If more than b keys hash into a page, the page overffows. 

The overflowed keys from a page have to be stored elsewhere. One of the main issues in hashing 

is how to efficiently handle overflows. 

A hashing function h is said to be a perfect hashing function if it causes no overflows (no 

more than b keys hash into every page). In [9] we consider the following hial-and-error method 

of finding perfect hashing functions for a given set of n keys to be hashed into rn pages each of 

size 6 .  Choose a function at random from the set of all functions mapping n objects to m objects. 
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3350 RAMAKRISHNA 

Hash all the keys using the chosen function. If none of the pages receive more than b keys then 

we have found a perfect hashing function. Otherwise, choose another function at random and 

repeat the process until a function which is perfect for the given set is found. We define a trial as 

the process of choosing a function at random from the set of all functions and hashing the keys 

using the chosen function to verify if it is perfect. The probability of a trial succeeding is pre- 

cisely P (n ,m ,b )  discussed in this paper. 

P (n ,m ,b)  is a measure of the performance of the hial-and-error method of finding perfect 

hashing functions. The reciprocal of P (n ,m ,b)  gives the expected number of trials required to 

find a perfect hashing function. A trial may stop as unsuccessful immediately after one of the 

pages overflows. We define the expected cost of a trial as the number of hash function evaluations 

required to determine if the aid is successful. 

Expected Cost of a Trial 

Considcr the balls and urns model. Let E (n ,m ,b )  denote the expected number of balls to 

be tossed before the first ball overflows. E(n ,m,b) is the same as the expected cost of a trial 

defined above. E (n ,m ,b )  is given by 

Probability that the i th ball Probability that none 
overflows and none of the + n * of the balls 1,2 ,..., n 
balls I , . . . , (i - 1 )  overflow o r  1 

E (n , m , 6 )  can be viewed as the area under the plot of P (n , m , b )  against n . A good approxima- 

tion for the purpose of computing E (n ,m ,b) is to assume that P (n ~n ,b )  is one for n < nl , is zero 

for n > nh and that it falls linearly from one to zero as n increases from nl to nh, where nl and nh 
1 are such that P (nl ,m ,b)  = 1- & and P (nh ,m ,b )  = , . Further analysis of the expected cost of 

finding perfect hashing functions can be found in [9]. 

7. CONCLUSIONS 

We have presented a recurrence relation and algorithm to compute the probability of a ran- 

dom dishibution of n balls into m urns each of size b resulting in no overflows. This solves the 

computational problem of a classical combinatorial extreme-value distribution. The analysis was 

crucial in the design of a practical and competitive perfect hashing scheme for large external 
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HASH TABLEIURN OVERFLOW 3351 

files[7,9]. The results and the techniques presented in this paper also enabled solution of other 

problems in [6,8,10]. The main problem solved in [lo] is to derive an exact probability distribu- 

tion of the number of balls overflowing, when n balls are randomly tossed into m urns each hav- 

ing a capacity of b balls. 

APPENDIX A 

Algorithm to compute a table of P (n .m ,b). 

procedure pnmb (parameters : mmax, b) 
b, mmax : integer ; 
P: array[O..b * mmax, l..rnmax] of real; (P[ij] stores P(i  , j ,b) )  

begin 
m, n, deficit : integer; 
term : real; 

( init ializeP(i~,b)= 1.0for 1 5 i  I b  and 1 I j  I m m a r )  
for m := 1 to mmax do 

for n := 0 to b do 
P[n,m] := 1.0; 

for m := 2 to mmax do 
deficit := b; 
term := 1.0 ; (see the notes below) 
f o r n : = b + l t o m * b d o  

adjust-term(tem, m, deficit); 
P[n,m] := P[n-l,m] -term * P[n-b-1,m-11 ; 
term = term * (m-l)/m * n/(n-b); 

endloop; 
endloop; 

end; 

procedure adjust-term(parameters : term, m, deficit) 
term : real; 
rn, deficit : integer; 

begin 
while( deficit > 0 and term > machine-epsilon) do 

term := t e d m ;  
deficit := deficit - 1 ; 

endloop; 
end; 

The above procedure is a direct implementation of the recurrence relation (4). The initial 

value of term should actually be llmb . For large values of m and b,  this may lead to term having 
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RAMAKRISHNA 

FIG 11. Plot of P (n ,m ,b), Urn capacity (b) : 20. 
Number of urns (m) : 5,10,20,30,40 

a value too small to be represented by a floating-point number in the computer. However, as the 

iteration progresses, the value of term increases slowly. Considering the range of values of the 

probabilities at the beginning of the iteration (close to 1.0). if term is less than machinc-epsilon it 

is as good as being zero for subtractions (and hence need not be computed accurately). The pro- 

cedure adjust-term handles this problem by not allowing the value of term to go very much 

below machine-epsilon. The incorrect value of term at the start of the iteration does not cause any 

error because in the main procedure the product of term and a probability is subtracted from 

another probability (P[n,m] := P[n-l,m] - term * P[n-b-1, m-11). (the value of machine-epsilon 

is a measure of the accuracy of real number arithmetic of the computer. It is adequate to view 

machine-epsilon as the largest real number such that the addition 1.0 + machine-epsilon gives a 

sum of precisely 1.0. The same applies for subtraction. Typically machine-epsilon is of the order 

of 10-7 to IW.) 

The nunibers involved are well scaled and the procedure is computationally stable. Round- 

off errors do not cause any problems unless the value of P (n,m ,b)  is of the order of machine- 

epsilon. When P (n ,m ,b) is very small, of the order of machine-epsilon, the exact values may still 

be computed using the recurrence relation (6) for R (n Jn ,b). 

Figure I1 plots the probabilities P (n,m,b) computed using the procedure given above, 

against n expressed as a percentage of the full capacity mb of the m urns. The higher curves 
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HASH TABLEIURN OVERFLOW 3353 

correspond to lower values of m . The graphs indicate that P (n ,m b )  drops very rapidly from 

almost 1.0 to almost 0.0 within a narrow range n .  This critical region becomes narrower as b 

increases and shifts slowly towards zero as the value of m increases. In section 5 we have 

analyzed the movement of the critical region for increasingly large values of m . 
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