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Query Optimizers
● Transform SQL into a query plan
● HUGE effort!

– 42K LOC in PG
– 1M+ SQL Server
– 45-55 FTEs, Oracle (~ $5mil/year)

● Requires per DB tuning
– PG: 15% bump
– Oracle: 22% bump
– SQL Server: 18% bump

SELECT * 
FROM t1, t2 WHERE… 

Query Optimizer



  

Classic Query Optimizers
● Cardinality estimation models

– Histograms 
– Uniformity
– MFVs

● Cost models
– Polynomials
– Hand tuned

● DP Search
– NP-Hard

Cardinality
Estimation

DP Search

Cost
Model
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Cardinality Estimation
SELECT * FROM A, B, C WHERE 
A.c1 = B.c1 AND A.c2 = C.c2;
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Learning QO?
● Cardinality estimation

– Can we use ML to 
predict the 
cardinalities?

– Yes, but limited impact 
on QO.



  

Cardinality Estimation
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Learning QO?
● Cardinality estimation

– Can we use ML to 
predict the 
cardinalities?

– Yes, but limited impact 
on QO.

● End-to-end QO
– Possible, but harder.
– Requires some 

background.



  

DB + ML
“but there’s no worst-case bound!”

- the DB community

“can’t hear you over
 all my grant money”
- the ML community



  

The Deep Learning Mythos

Fear, Uncertainty, Doubt.
It’s a black box. Magic

Crazy results from Arch-Mage Goodfellow



  

Deep Learning for QO
● Recent groundswell of research
● RL based approaches:

– Feb/Mar ‘18:
● Marcus et al. (ReJOIN)
● Ortiz et al.

– Aug ‘18:
● Krishnan et al. (DQ)

– Aug ‘19:
● Neo, VLDB

● Cardinality based approaches:

– 2015: Liu et al.

– 2019: Kipf et al. (MSCN)

– Aug ‘19: 
● Group by (Kipf et al.)

● Local models (Woltmann et al.)

● Shared clouds (Wu et al.)



  

Deep Learning for QO
● Many of these works represent a “just add deep learning and stir” approach.
● Characterized by:

– Fully-connected neural networks
– Train / test set leakage
– Off-the-shelf RL or regression loss functions
– Little to no integration with a broader DB
– No evaluation of actual query performance

● Examples: ReJOIN*, MSCN, Learned State Representations, operator 
embeddings*, DQ, CardNet, and probably many more...

* my work, and I’ll be the first to admit that I drank the Kool-Aid.
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What makes DL good?
● Biggest DL success stories:

– Computer vision (CV)
– Natural language processing (NLP)
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Convolution 
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What makes DL good?
● To build a NN to recognize objects in images, we modeled the low-level 

structure used by the human eye. 
– LeCun et al., and indirectly, a Turing award

● To build a NN to recognize words in speech, we modeled the low-level 
structure used by the human prefrontal cortex. 
– Graves et al. 

● To build a NN to {perform a task}, we modeled the low-level structure 
used by {expert system known to perform well}.
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What makes DL good?
● As systems researchers, we 

hate complex, problem-specific 
solutions
– We love throwing out complexity 

and generalizing.

● Our first response when we see 
all these different architectures?
– Can’t we be more general?

CNNs LSTMs



  

What makes DL good?
● “But wait! Hornik et al. showed that fully-

connected layers can represent any arbitrary 
function!” - Someone not good at deep learning.
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What makes DL good?
● You don’t want an arbitrary function that fits.
● You want a generalizable function that fits.
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What makes DL good?
● Old school ML: regularization. Deep learning: just SGD!
● How do we know if our function will generalize?
● Inductive bias

– One way: model it after a (biological) expert system that 
generalizes.

– Generally: constrain the type of function that can be learned 
based on prior knowledge of the problem at hand.



  

Inductive Bias
● Rank MNIST performance of these algorithms.

Fully-connected NN Convolution NN Random Forest

Fixed parameter budget ~5k, ReLU, large hyperparameter grid search
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3rd 1st 2nd
86% 98%

92%



  

Inductive Bias
● Conv nets have a strong inductive bias borrowed from biological visual 

systems.
● Random forests have a bias towards conditional sparsity – given one 

pixel, it’s neighbor likely isn’t that telling.
● Fully connected NNs assign every feature a weight no matter what – 

biased towards sensitive/simple functions
– … sort of. For details see Valle-Perez et al.,  https://arxiv.org/abs/1805.08522

● Deep learning is fantastic if and only if the inductive bias of the 
model matches reality.

https://arxiv.org/abs/1805.08522


  

Inductive Bias
● Deep learning hype

– End-to-end
– Automatic feature 

engineering
– Great generalization

● Deep learning reality:
– All these things.
– BUT you have to get 

the model architecture 
right!



  

Inductive Bias
● What about database 

systems?
– Convolutional neural networks 

are to computer vision as 
________ is to database 
systems?

● Obviously, I don’t have the 
answer.

● But here’s an idea: tree 
convolution!



  

Neo: A Learned Query Optimizer
● Joint work

– Parimarjan Negi, Hongzi Mao, Chi Zhang, 
Mohammad Alizadeh, Tim Kraska, Olga 
Papaemmanouil, Nesime Tatbul.

● An early prototype of what a deep learning 
powered optimizer might look like



  

Neo
● No cost models, cardinality estimation or exponential search.

– Previous: can replace each with a learned system in isolation
● Unclear benefit on query latency

– Neo is first to show we can have all learned everything.
● Optimizing query latency directly, end-to-end

● Automatic per-DB tuning 
– Adaption to the user’s workflow and data

● Headline result: matches or exceeds the performance of SOTA query 
optimizers within 24hrs of training.
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1. We observe how a basic 
query optimizer handles a 
sample workload.

2. We train a combination of a 
value model and a plan search 
module to emulate the expert.

3. We create a feedback loop 
where we refine the value 
model using real query latency 
on user-submitted queries.



  

Neo
● First, how to represent QO as an RL problem? (MDP)
● Neo is designed around three principles:

– Find the right inductive bias
● Fully-connected neural networks? Never heard of ‘em.

– Learning from demonstration
● Watch masters. Emulate masters. Surpass masters.

– Learn embeddings
● No histograms, no exception lists. Learned models.

See paper for details. ☺

Just an overview 
today.



  

Query Optimization as an MDP
● DB assumptions

– Binary query plan trees
– Non-distributed 
– Fixed # join operators
– Equi-joins only



  

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_IN

ACTOR
Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R1

R2

R3

R4

R5

(ACTORS ⋈ APPEARS_IN  ⋈ FILM  ⋈ PRODUCED  ⋈ COMPANY)
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Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Every previous state 
had reward 0

Now, we execute the 
program and record 
the latency.

Reward is -latency.

Hash ⋈

Sort ⋈

Sort ⋈

⋈Hash
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Deep Reinforcement Learning
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Deep Reinforcement Learning
Traditional Cost Model

A cost function C which 
estimates the intermediate 
cost of plan
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maps each state to the best 
possible latency achievable 
from that state.
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Deep Reinforcement Learning
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Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best 
possible latency achievable 
from that state.

Of course, there’s no Q(·).

… so we will learn an 
approximation, Q̂
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Deep Reinforcement Learning
● Value iteration

π
0

Initial Policy
(random)

Q
t+1

Q Network
Trained from Experience

π
t+1

Learned Policy
Search over v

t+1



  

Inductive Bias
● How should we approximate the Q function?
● Option 1

– Flatten the state into a vector
– Use a fully connected neural network

● Not really how deep learning becomes successful 
● Option 2

– Try to find the right inductive bias
– Build an intuitive network architecture



  

Tree Convolution
● How do we come up 

with a good inductive 
bias for query plans?

Sort
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Tree Convolution
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“Many stacked sort 
operators – possibly 
avoids a resort.”
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Tree Convolution
● How do we come up 
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Tree Convolution
● How do we come up 

with a good inductive 
bias for query plans?
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Hash

Sort

Hash

“Hash then sort, 100% 
requires rehash or 
resort.”

“APPEARS_IN” is 
presorted on disk – 
should use a sort 
instead of a hash.

Experts examine local structure first, 
then look to higher level features.
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Tree Convolution
● Like image convolution, filter weights are:

– Automatically learned
– Stacked (to learn higher-level features)

● Efficiently vectorized on a GPU
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Random Policies
● DRL is very sample 

inefficient
– You have to play for a long 

time before you get good.

● In QO, doing worse 
takes longer!
– Cannot afford a random 

initial policy.

* not the exact histogram… credit to Leis et al.
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Random Policies
● DRL is very sample 

inefficient
– You have to play for a long 

time before you get good.

● In QO, doing worse 
takes longer!
– Cannot afford a random 

initial policy.
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Random Policies
● Heuristic query optimizers have 

been around for a long time.
– Some are very simple, like 

Selinger et al., ‘89
– This is the green line.

● So instead of starting from 
random…
– Use a simple heuristic system to 

bootstrap our policy.
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Experiments
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On test queries, 
Neo outperforms 
PG 15-25%.
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Experiments



  

Conclusions
● Neo: first learned end-to-end optimizer
● Achieves performance on-par with SOTA commercial 

query optimizers
● Limitations & future work

– Depends on an expert
– Fixed schema
– Concurrent queries



  

Coming Soonish
● Bao: Bandit Optimizer
● Current optimizers might not 

be good at picking the best 
plan, but they’re great at 
avoiding terrible plans.

● Can we multiplex simple 
optimizers together using 
learning? 0 20 40 60

Time (hours)
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That’s All
● These slides: https://ryan.cab/bu20 

● Website: https://ryan.cab 
● Me, on Twitter: @RyanMarcus
● Will find good inductive biases for food!

– Current postdoc at CSAIL, looking for a position next year!

● Email: ryanmarcus@csail.mit.edu
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