

Neo: A Learned Query Optimizer

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang,
Mohammad Alizadeh, Tim Kraska,
Olga Papaemmanouil, Nesime Tatbul

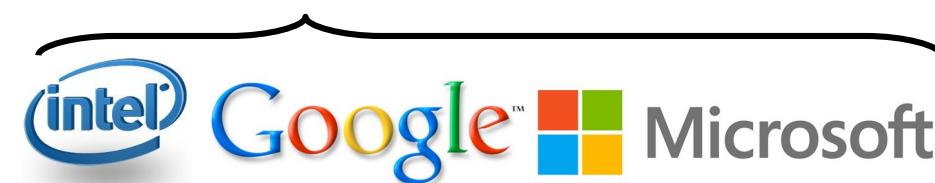
ryanmarcus@csail.mit.edu

Twitter: @RyanMarcus

Paper: <http://rm.cab/neo>

Slides: <http://rm.cab/neovldb19>

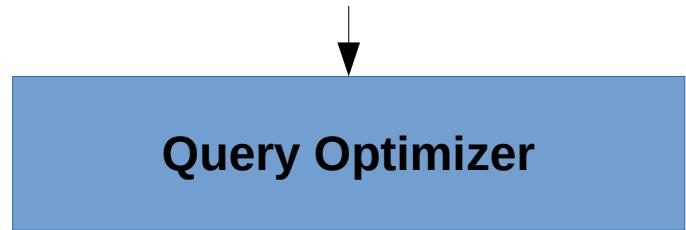
Data Systems and AI Lab



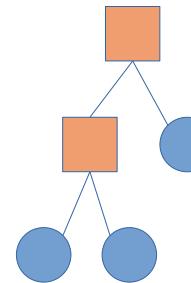
Query Optimizers

- Transform SQL into a query plan
- HUGE effort!
 - 42K LOC in PG
 - 1M+ SQL Server
 - 45-55 FTEs, Oracle (~ \$5mil/year)
- Requires *per DB* tuning
 - PG: 15% bump
 - Oracle: 22% bump
 - SQL Server: 18% bump

```
SELECT *  
FROM t1, t2 WHERE...
```

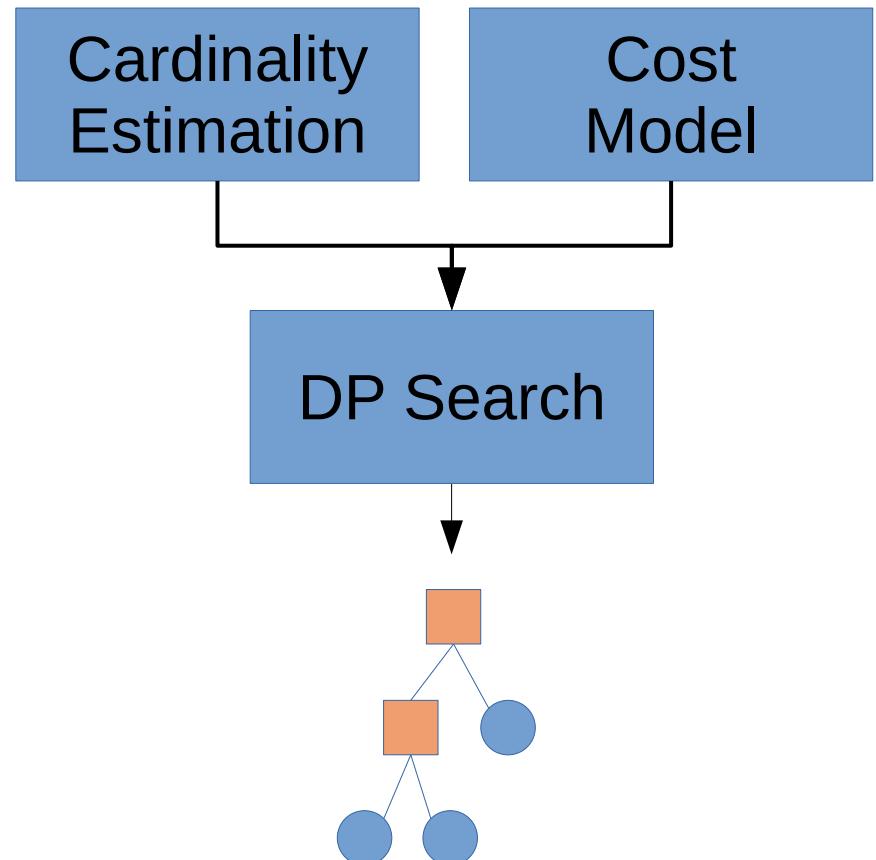


Query Optimizer



Classic Query Optimizers

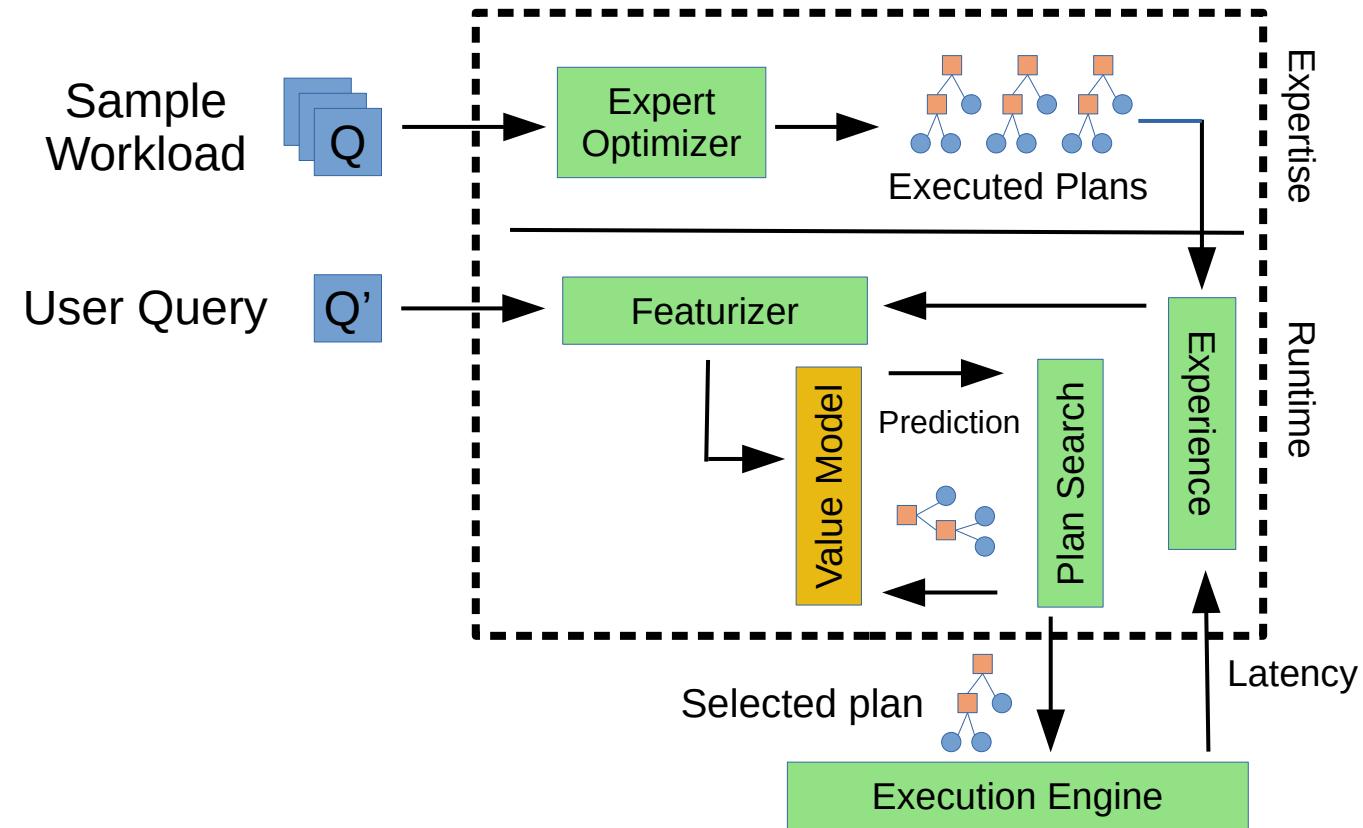
- Cardinality estimation models
 - Histograms
 - Uniformity
 - MFVs
- Cost models
 - Polynomials
 - Hand tuned
- DP Search
 - NP-Hard



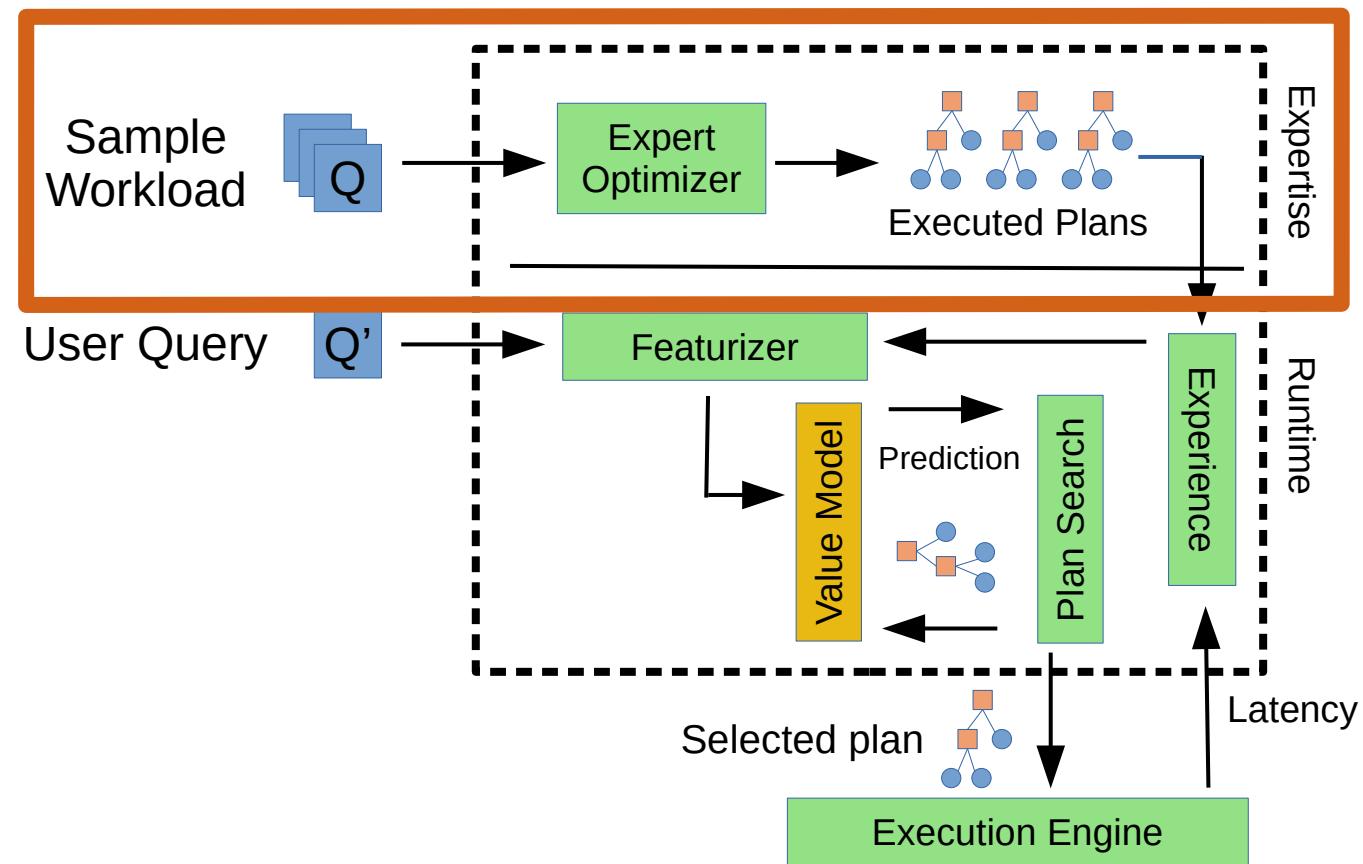
Neo

- No cost models, cardinality estimation or exponential search.
 - Previous: can replace each with a learned system *in isolation*
 - Unclear benefit on query latency
 - Neo is first to show we can have *all learned everything*.
 - Optimizing query latency directly, end-to-end
- Automatic per-DB tuning
 - Adaption to the user's workflow and data
- Headline result: matches or exceeds the performance of SOTA query optimizers within 24hrs of training.

Neo

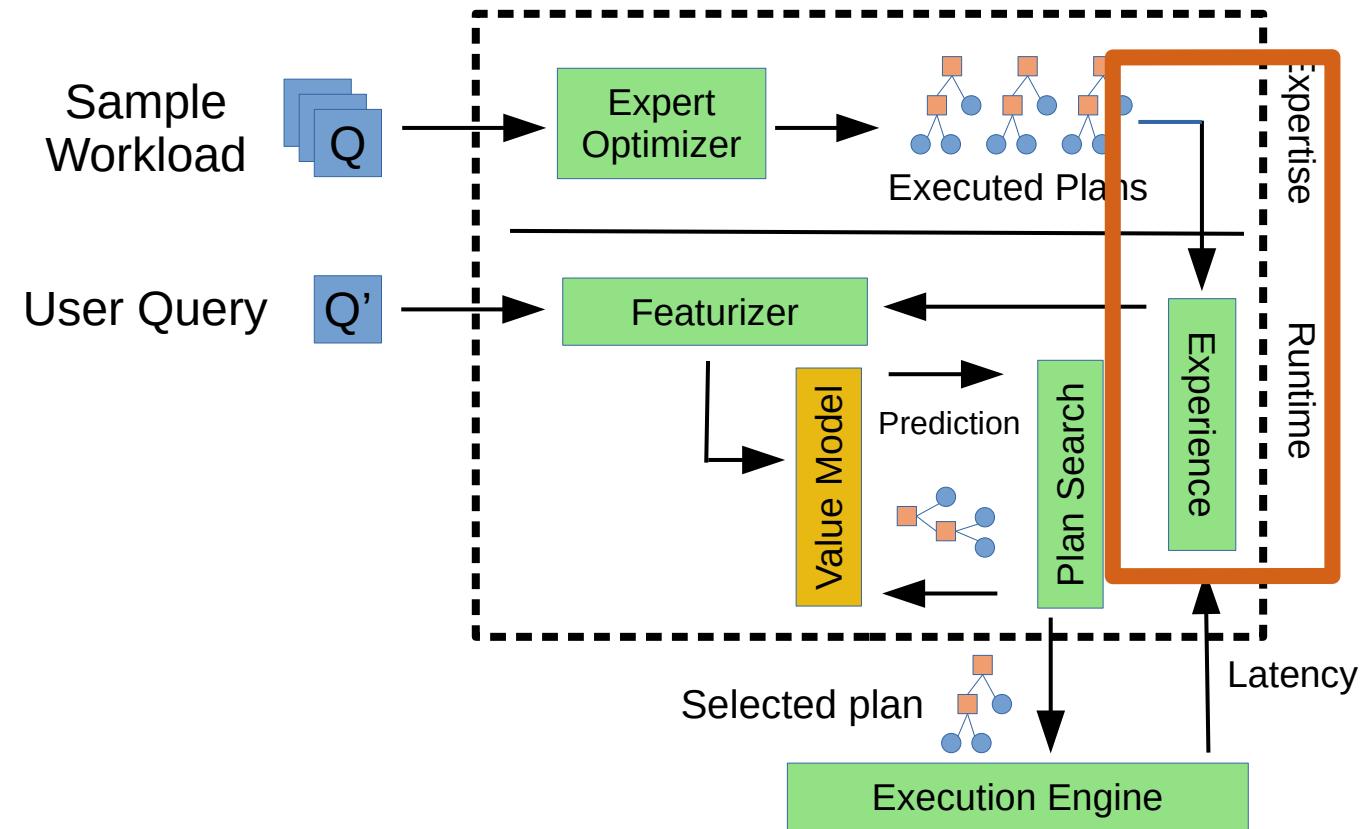


Neo



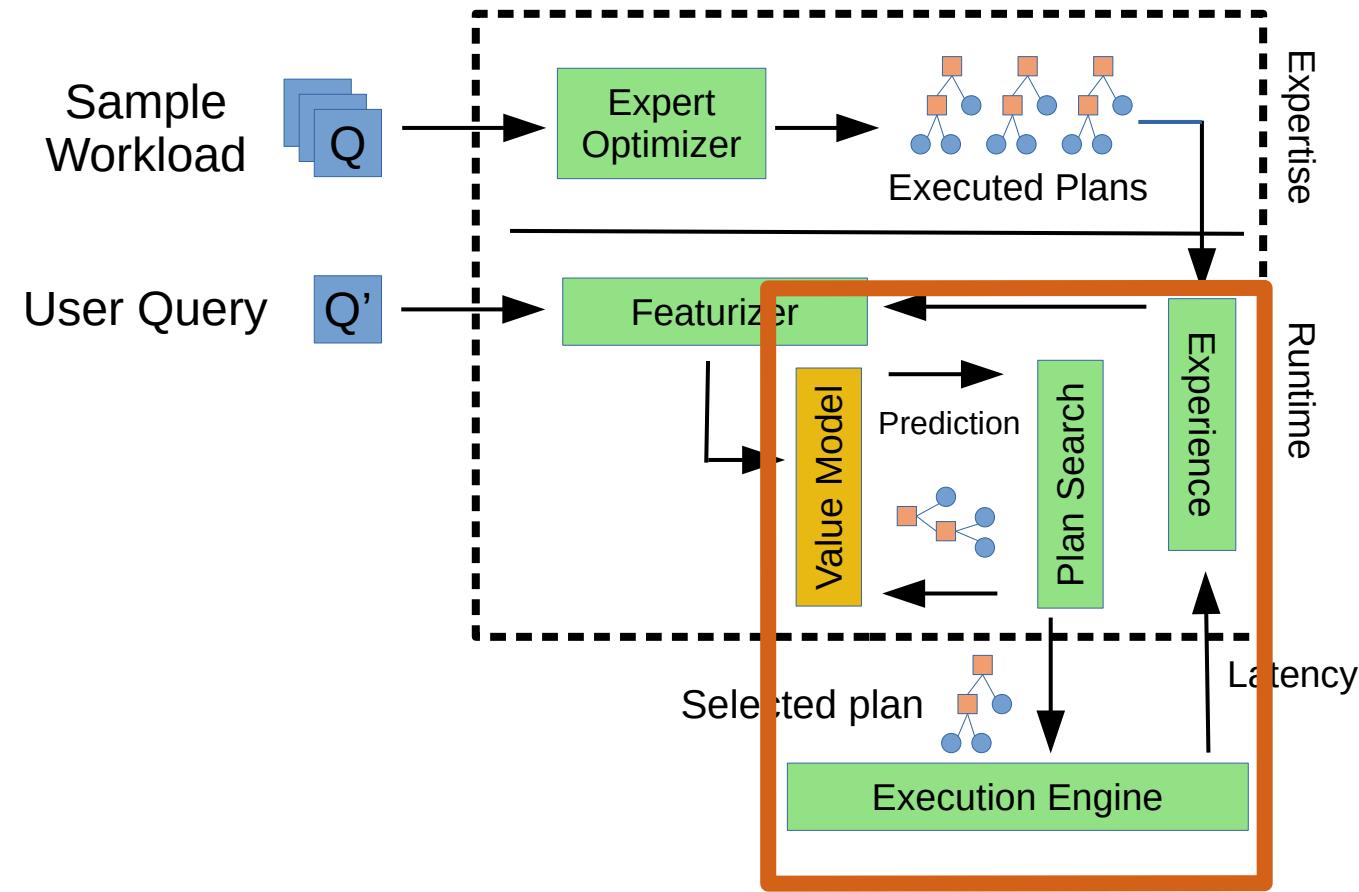
1. We observe how a basic query optimizer handles a sample workload.

Neo



1. We observe how a basic query optimizer handles a sample workload.
2. We train a combination of a *value model* and a *plan search* module to emulate the expert.

Neo



1. We observe how a basic query optimizer handles a sample workload.
2. We train a combination of a *value model* and a *plan search* module to emulate the expert.
3. We create a feedback loop where we refine the value model using real query latency on user-submitted queries.

This Talk

- First, how to represent QO as an RL problem? (MDP)
- Neo is designed around three principles:
 - Find the right inductive bias
 - Fully-connected neural networks? Never heard of 'em.
 - Learning from demonstration **Just an overview today.**
 - Learn embeddings **See paper for details. 😊**

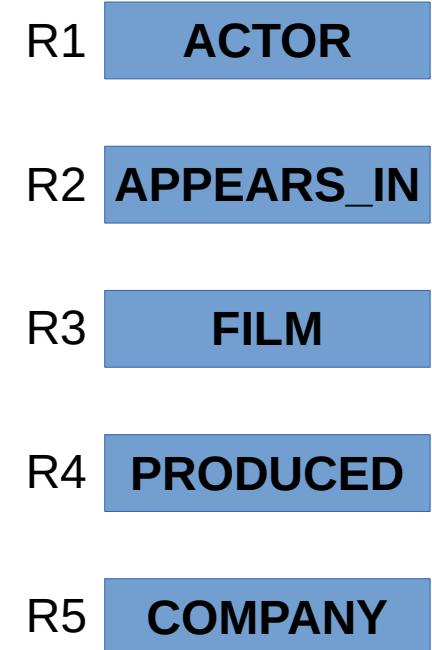
Query Optimization as an MDP

- DB assumptions
 - Binary query plan trees
 - Non-distributed
 - Fixed # join operators
 - Equi-joins only

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

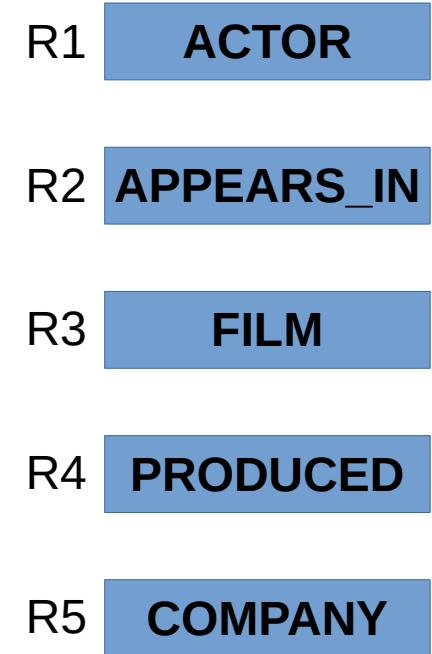


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort



(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

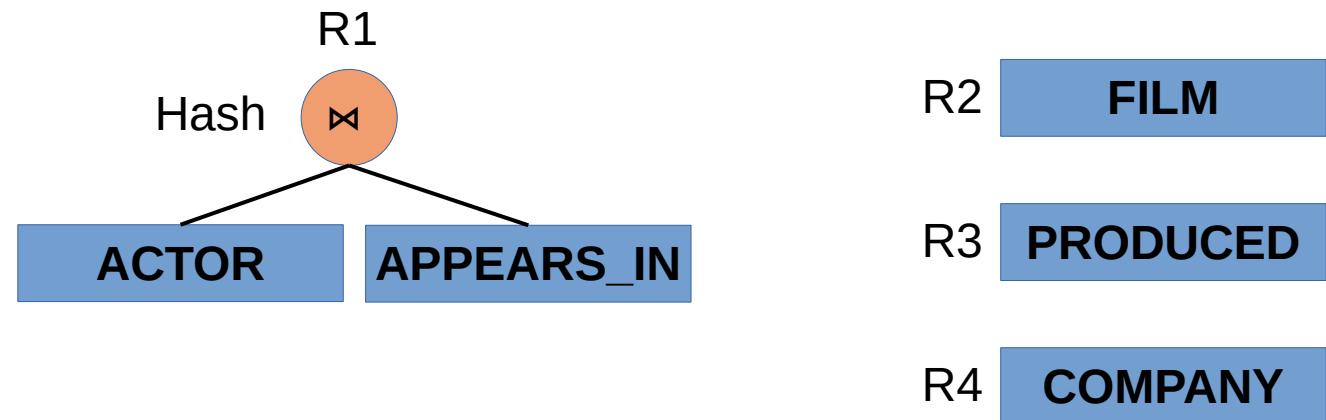
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort

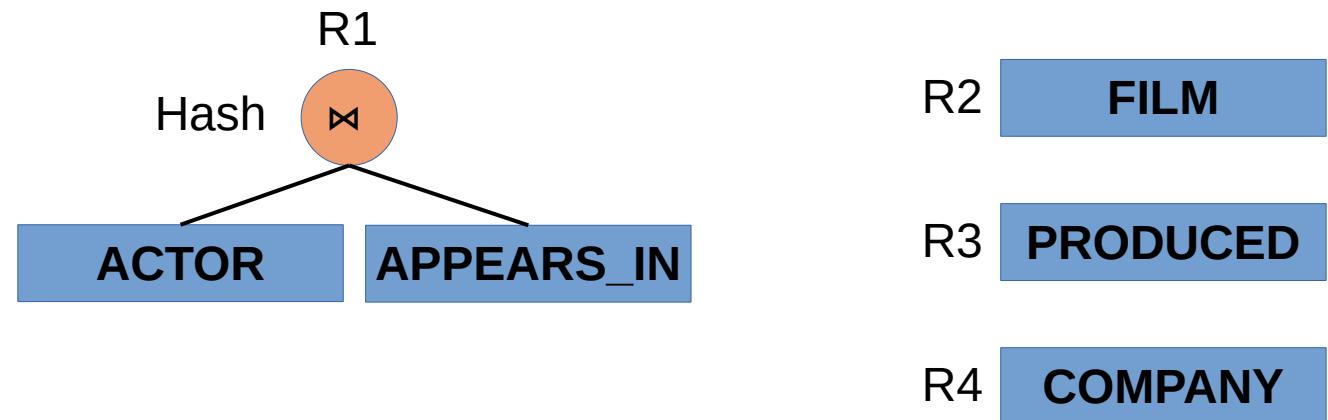


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
- 4. (R2, R3) Sort**
5. (R3, R4) Hash
6. (R3, R4) Sort

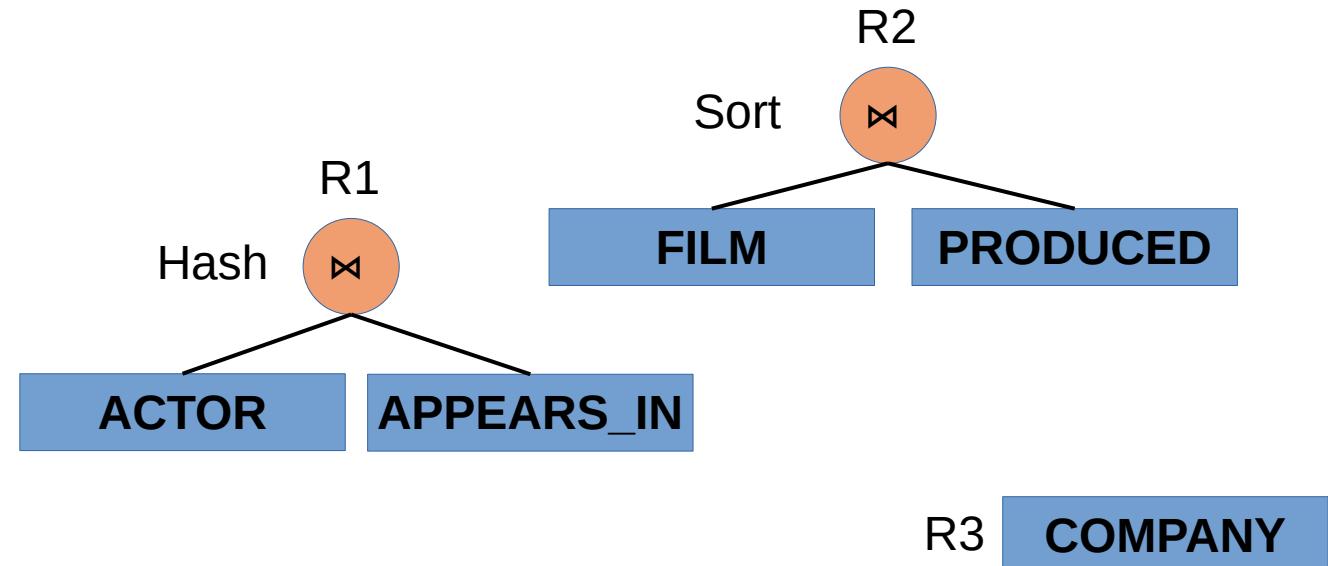


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. **(R2, R3) Sort**
5. (R3, R4) Hash
6. (R3, R4) Sort

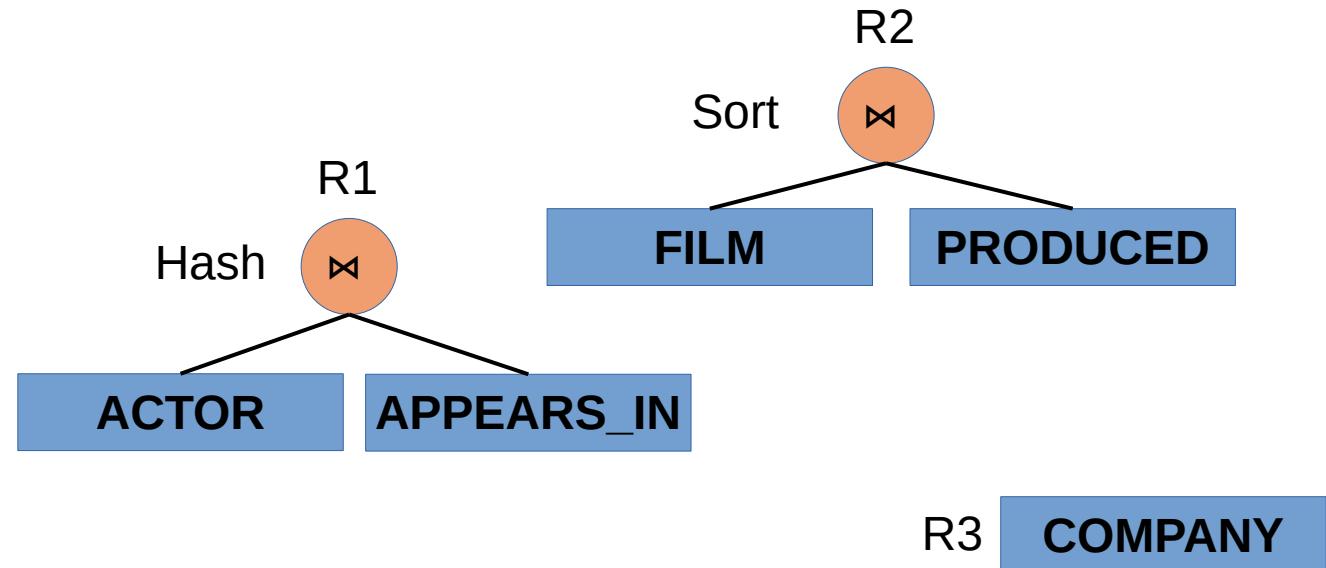


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

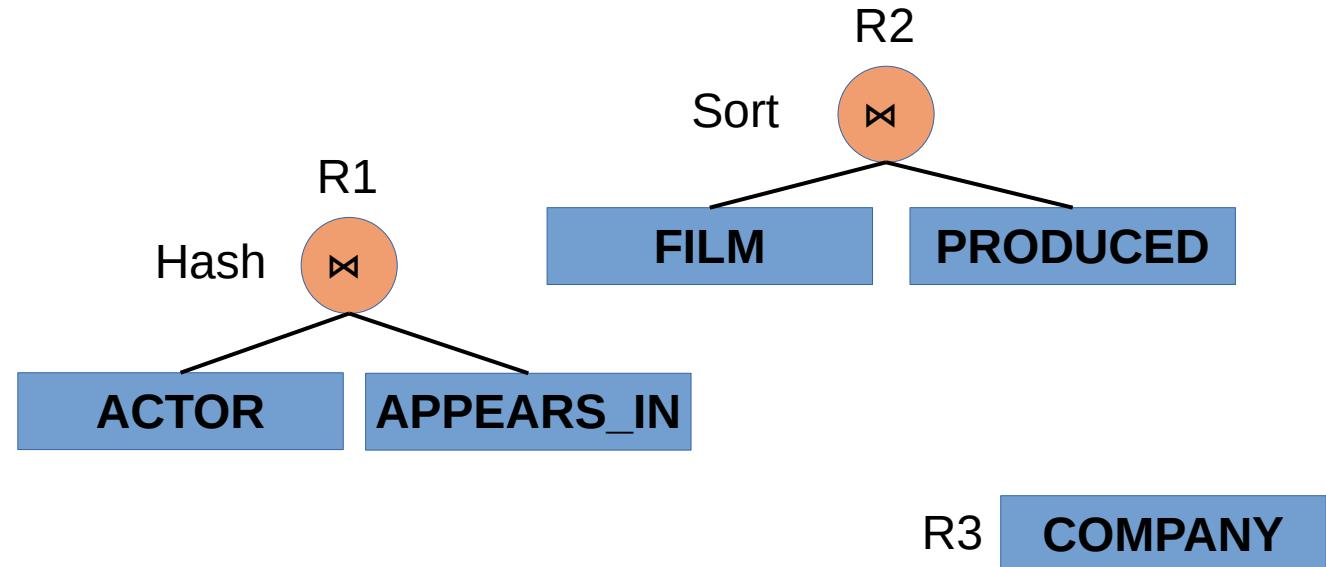


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

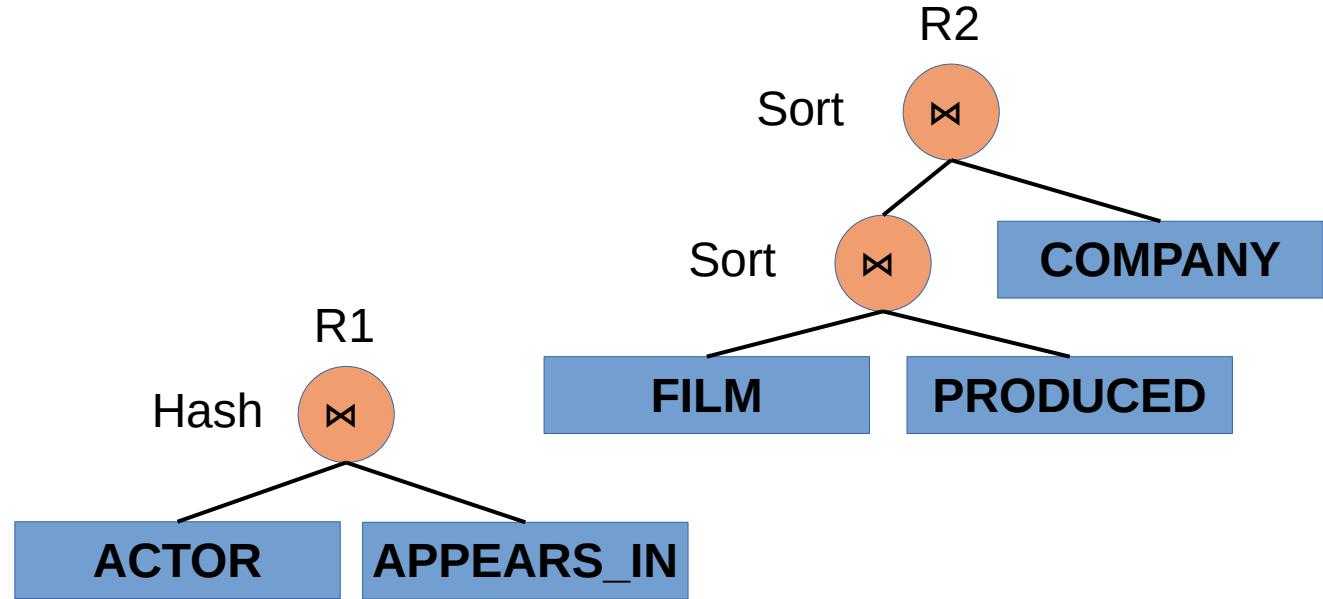


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

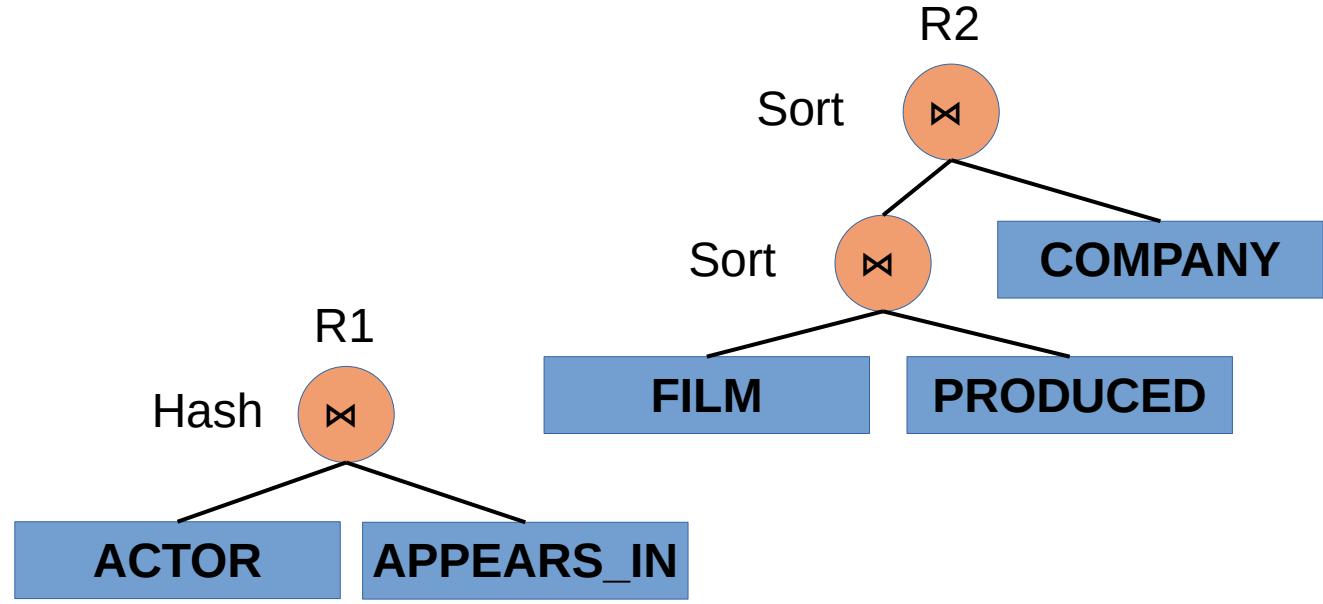


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort

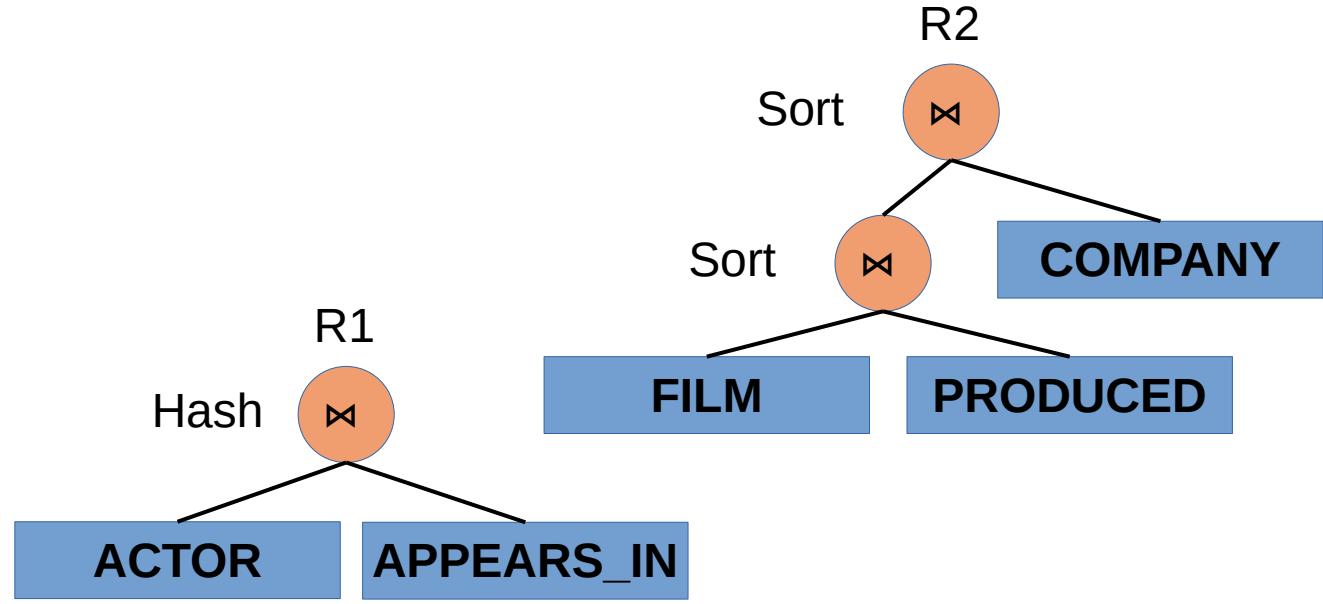


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort

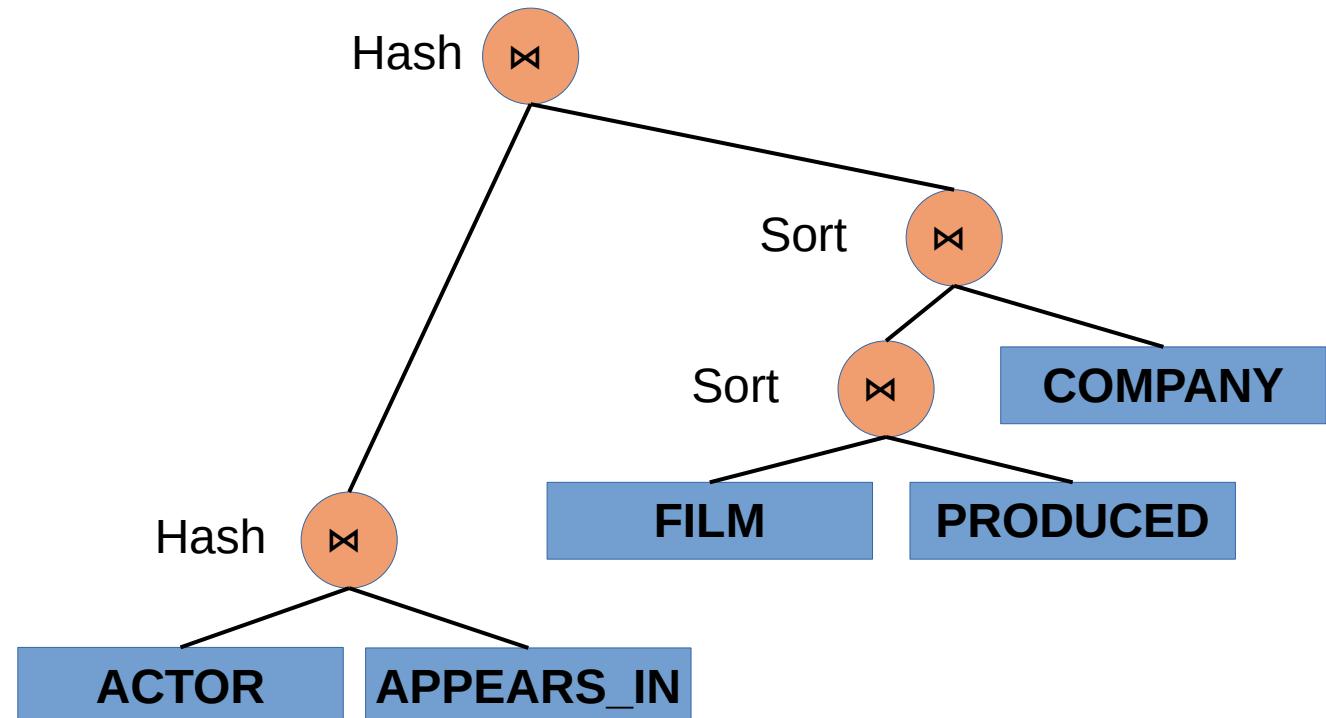


(ACTORS ✖ APPEARS_IN ✖ FILM ✖ PRODUCED ✖ COMPANY)

Query Optimization as an MDP

Actions available:

1. (R1, R2) Hash
2. (R1, R2) Sort



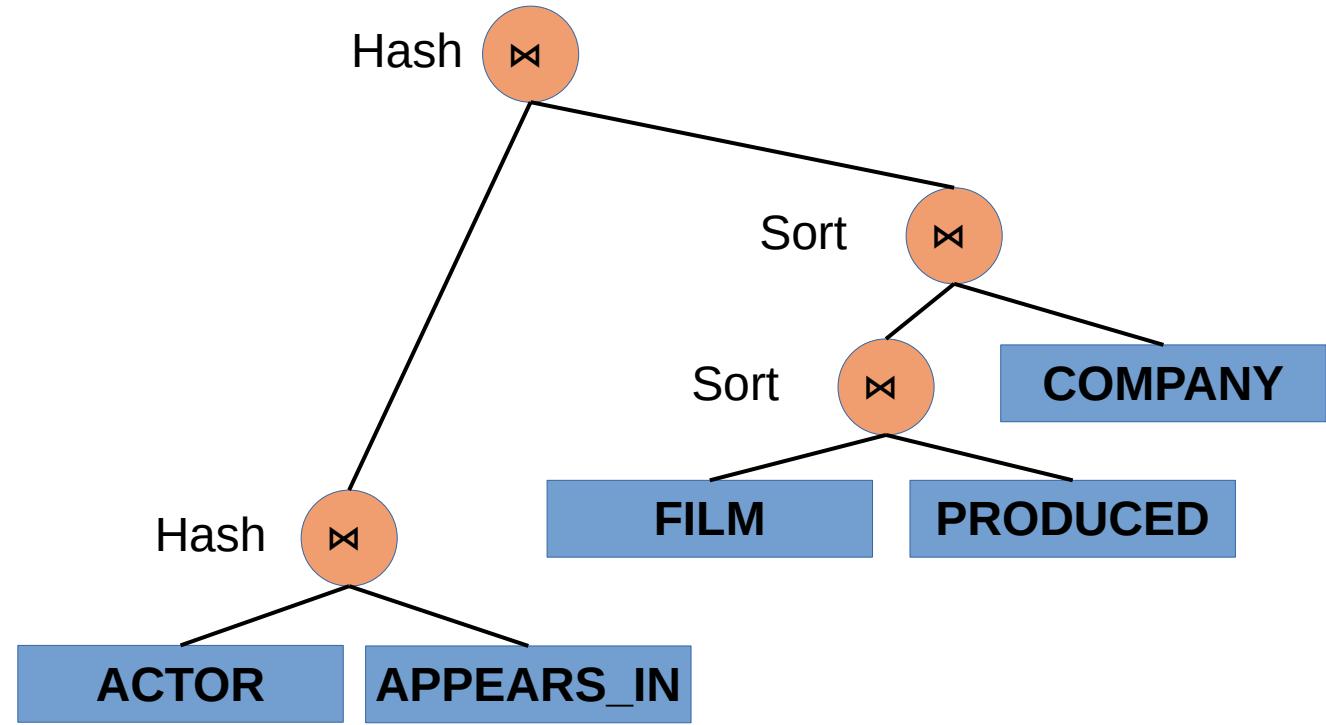
(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Query Optimization as an MDP

Every previous state
had reward 0

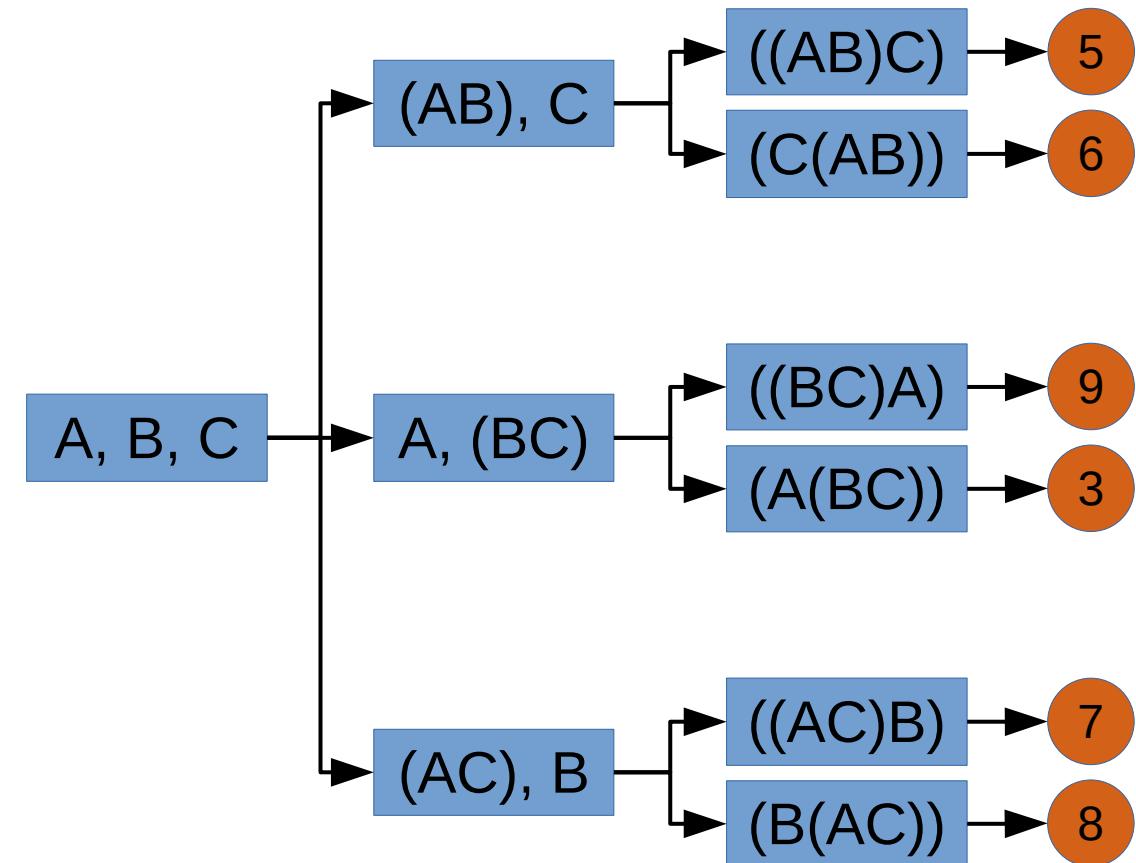
Now, we execute the
program and record
the latency.

Reward is -latency.

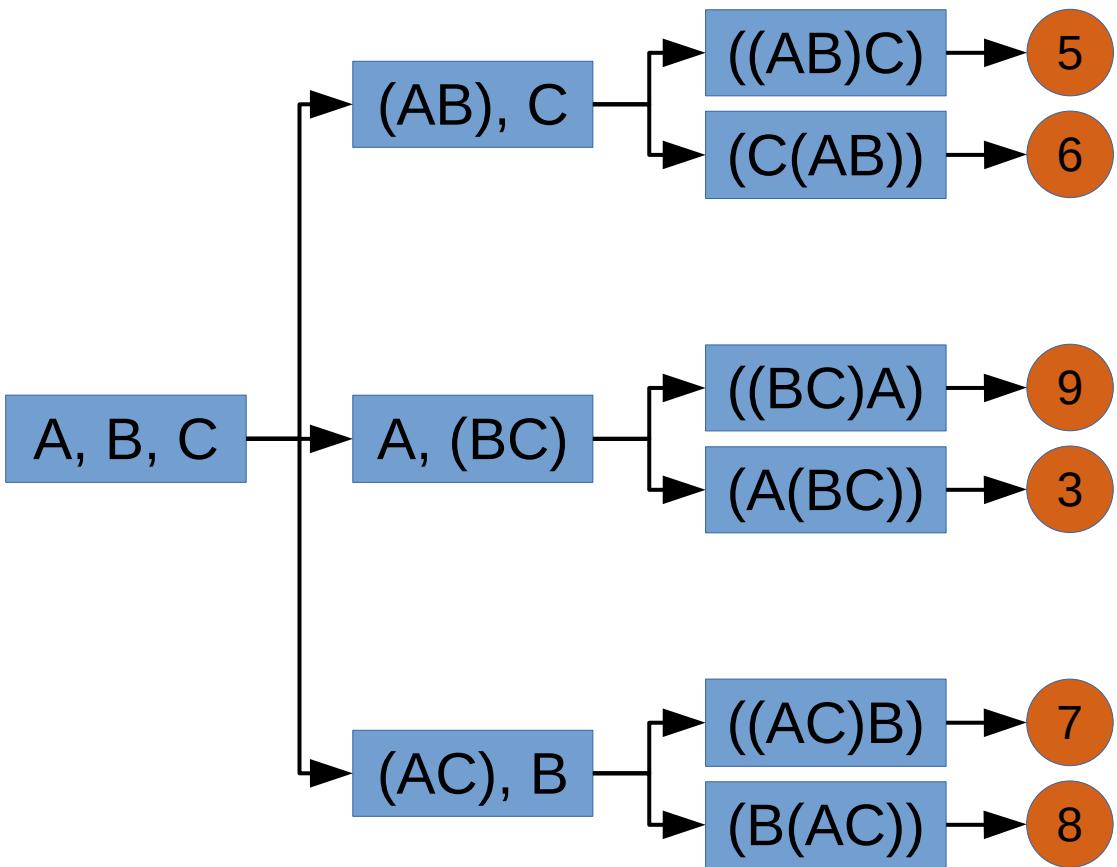


(ACTORS \bowtie APPEARS_IN \bowtie FILM \bowtie PRODUCED \bowtie COMPANY)

Deep Reinforcement Learning



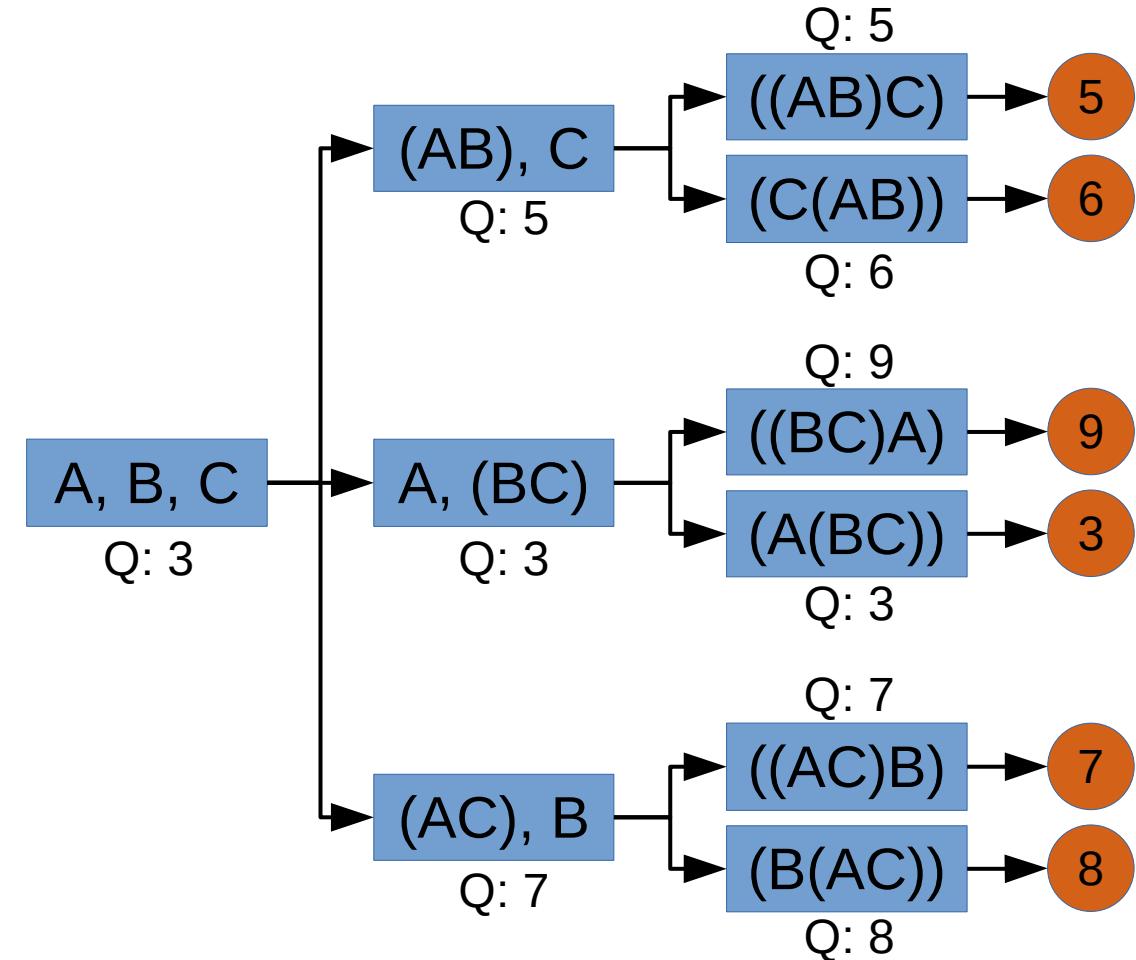
Deep Reinforcement Learning



Deep reinforcement learning

Supp. an oracle $Q(\cdot)$ which maps each state to the *best possible latency achievable* from that state.

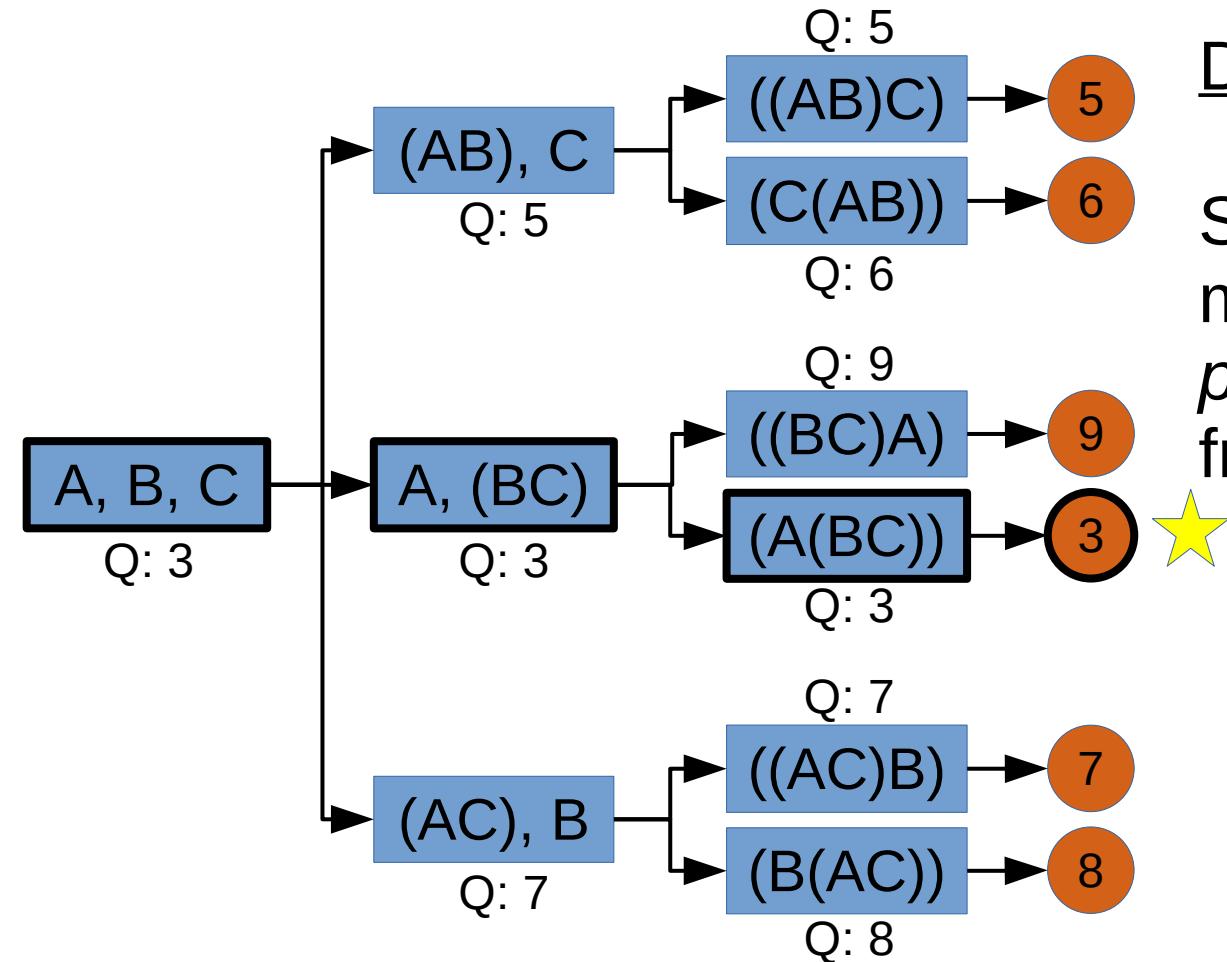
Deep Reinforcement Learning



Deep reinforcement learning

Supp. an oracle $Q(\cdot)$ which maps each state to the *best possible latency achievable* from that state.

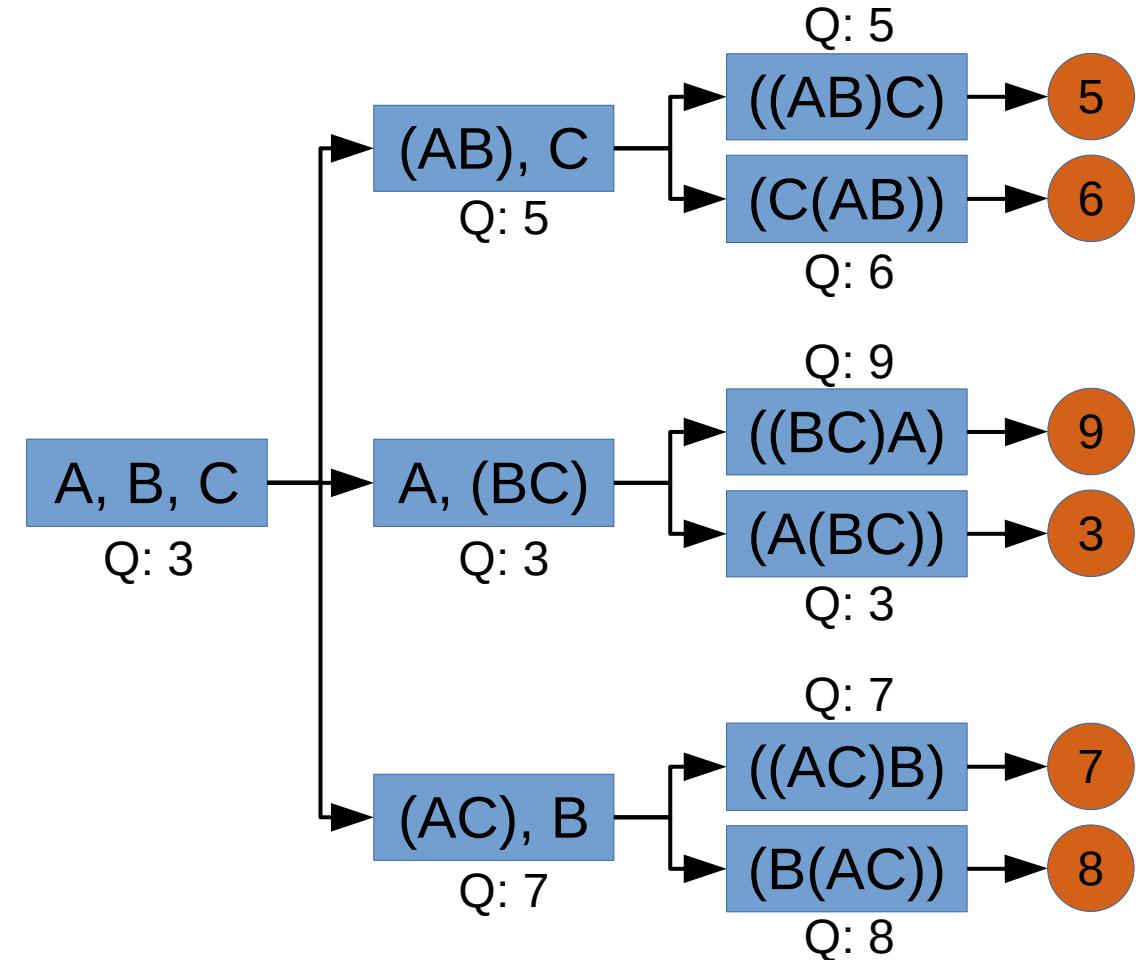
Deep Reinforcement Learning



Deep reinforcement learning

Supp. an oracle $Q(\cdot)$ which maps each state to the *best possible latency achievable* from that state.

Deep Reinforcement Learning



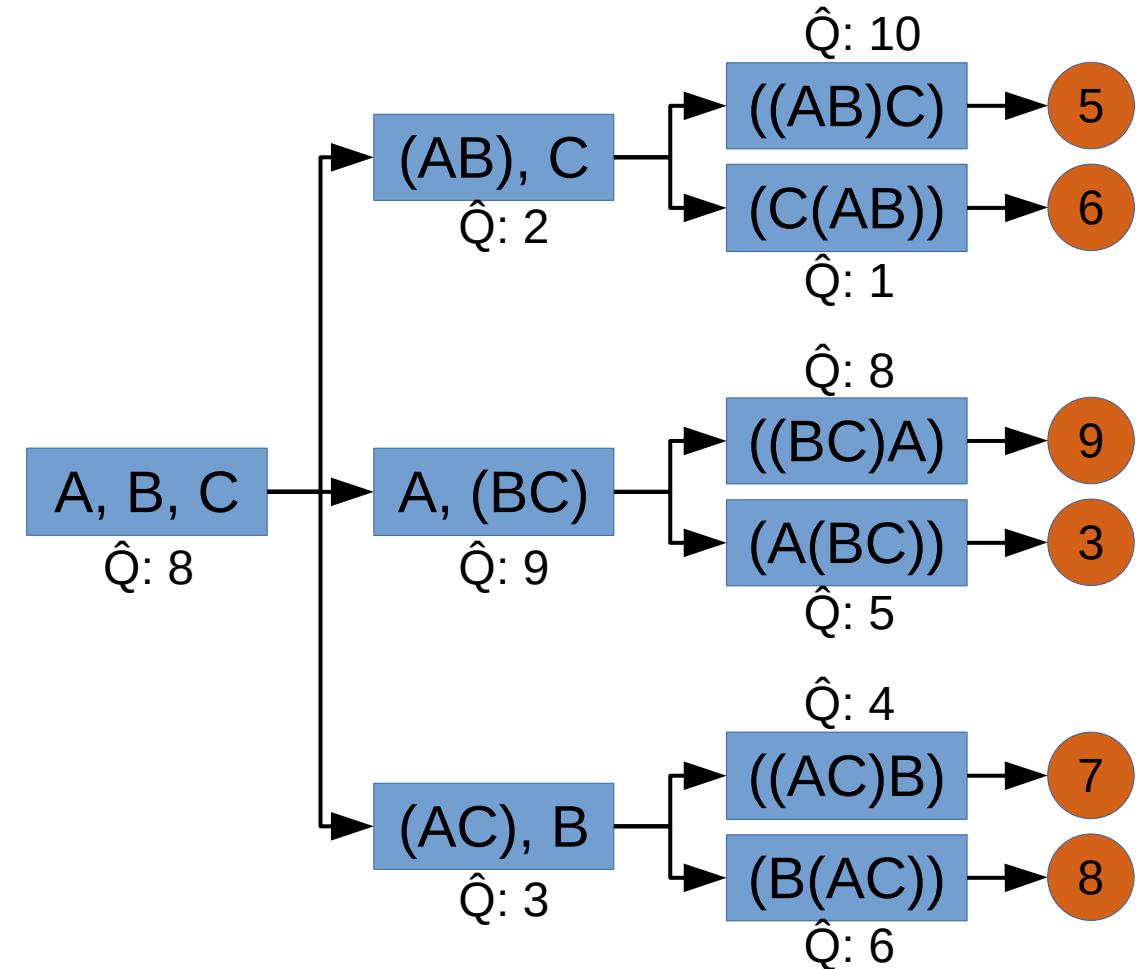
Deep reinforcement learning

Supp. an oracle $Q(\cdot)$ which maps each state to the *best possible latency achievable* from that state.

Of course, there's no $Q(\cdot)$.

... so we will learn an approximation, \hat{Q}

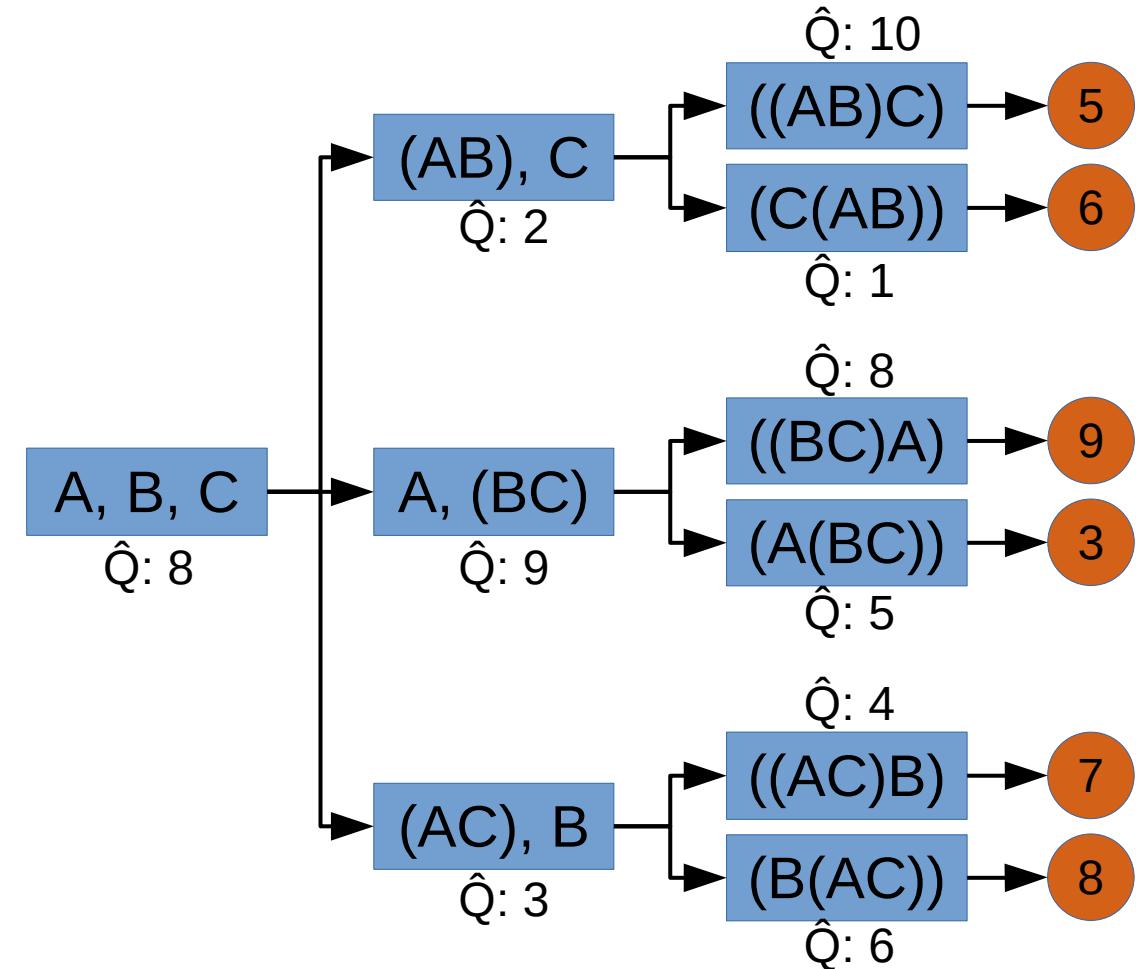
Deep Reinforcement Learning



Deep reinforcement learning

Approximation, \hat{Q} .
1) initialize \hat{Q}_0

Deep Reinforcement Learning



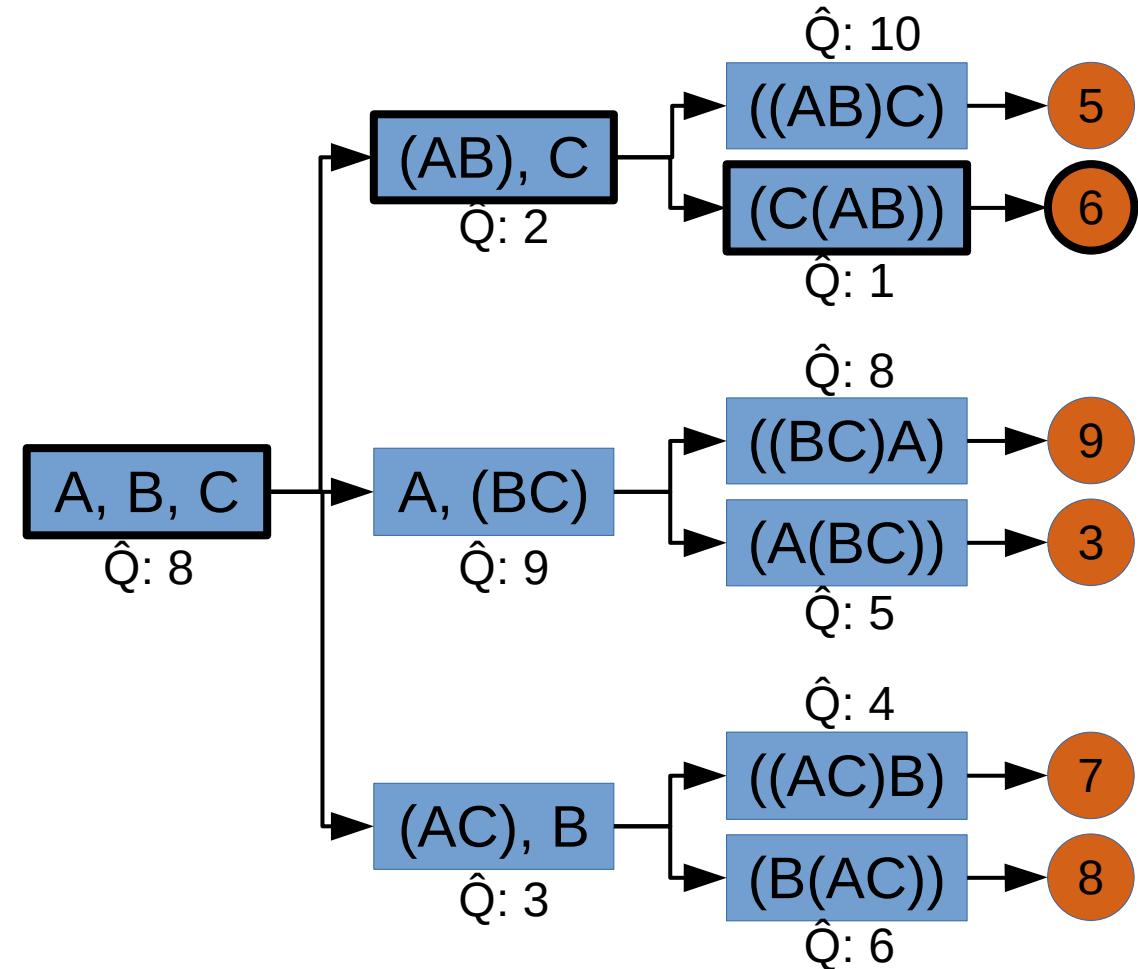
Deep reinforcement learning

Approximation, \hat{Q} .

1) initialize \hat{Q}_0

2) play 1 round with \hat{Q}_0

Deep Reinforcement Learning



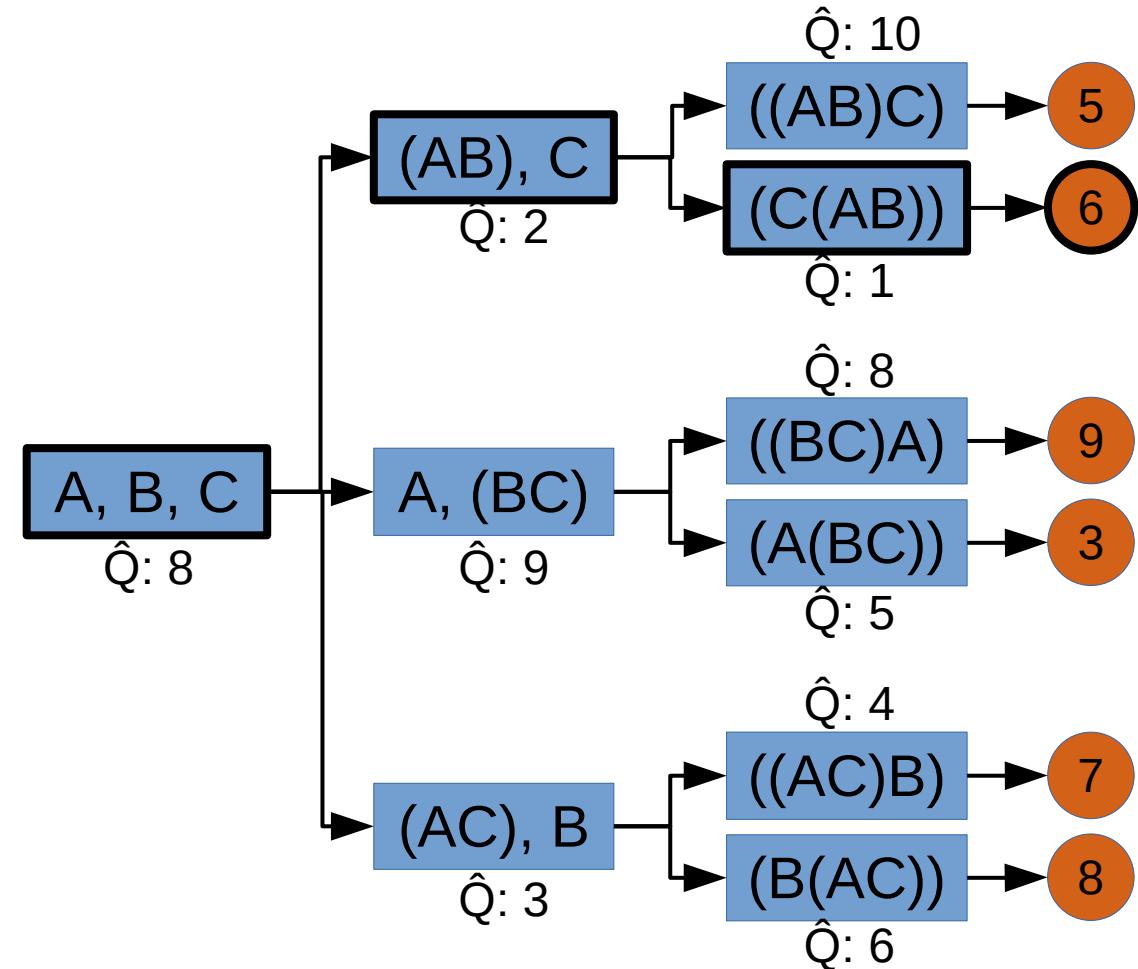
Deep reinforcement learning

Approximation, \hat{Q} .

1) initialize \hat{Q}_0

2) play 1 round with \hat{Q}_0

Deep Reinforcement Learning



Deep reinforcement learning

Approximation, \hat{Q} .

- 1) initialize \hat{Q}_0
- 2) play 1 round with \hat{Q}_0
- 3) use obs. to train \hat{Q}_1

eg., $\hat{Q}_1((C(AB)) = 6$
 $\hat{Q}_1(A, (BC)) = 6$

Deep Reinforcement Learning

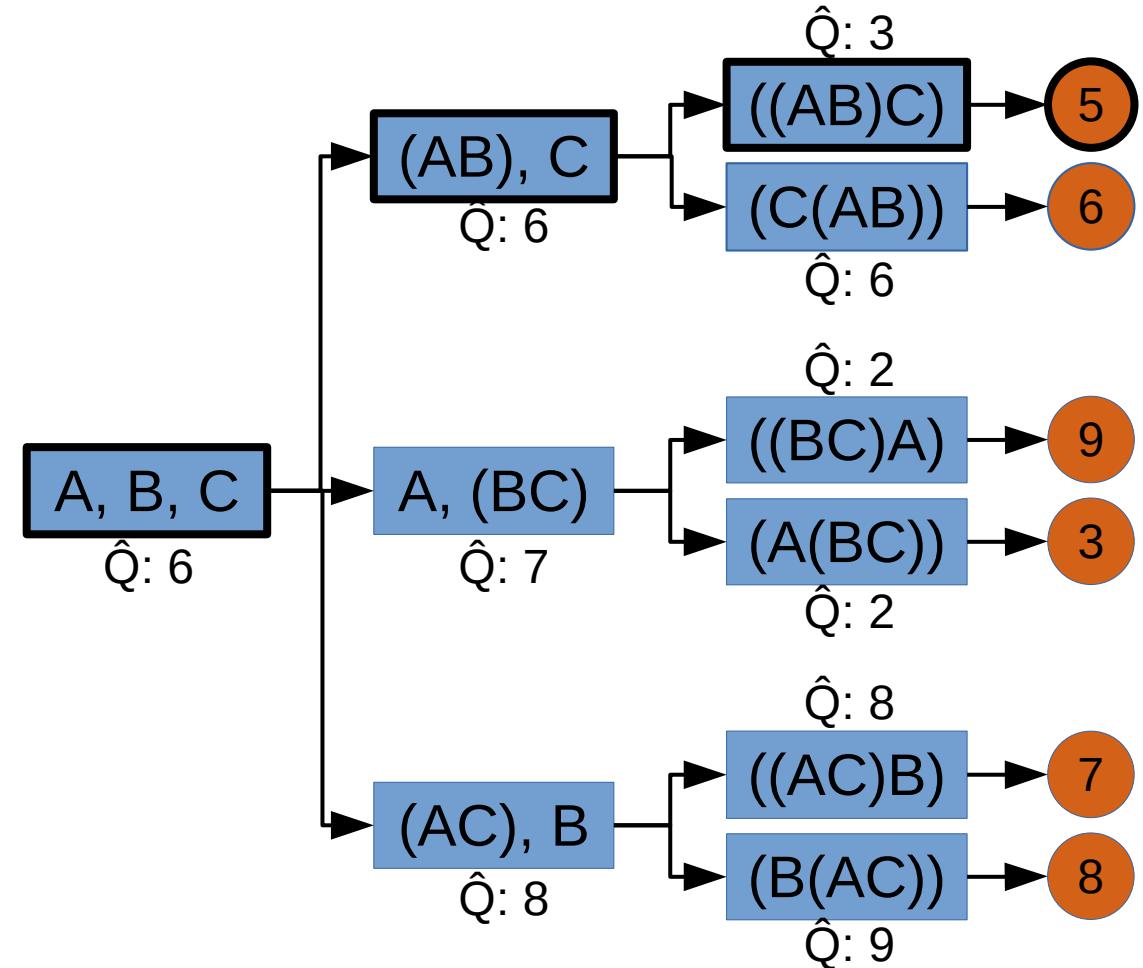


Deep reinforcement learning

Approximation, \hat{Q} .

- 1) initialize \hat{Q}_0
- 2) play 1 round with \hat{Q}_0
- 3) use obs. to train \hat{Q}_1
 - eg., $\hat{Q}_1((C(AB))) = 6$
 - $\hat{Q}_1(A, (BC)) = 6$
- 4) play 1 round with \hat{Q}_1

Deep Reinforcement Learning

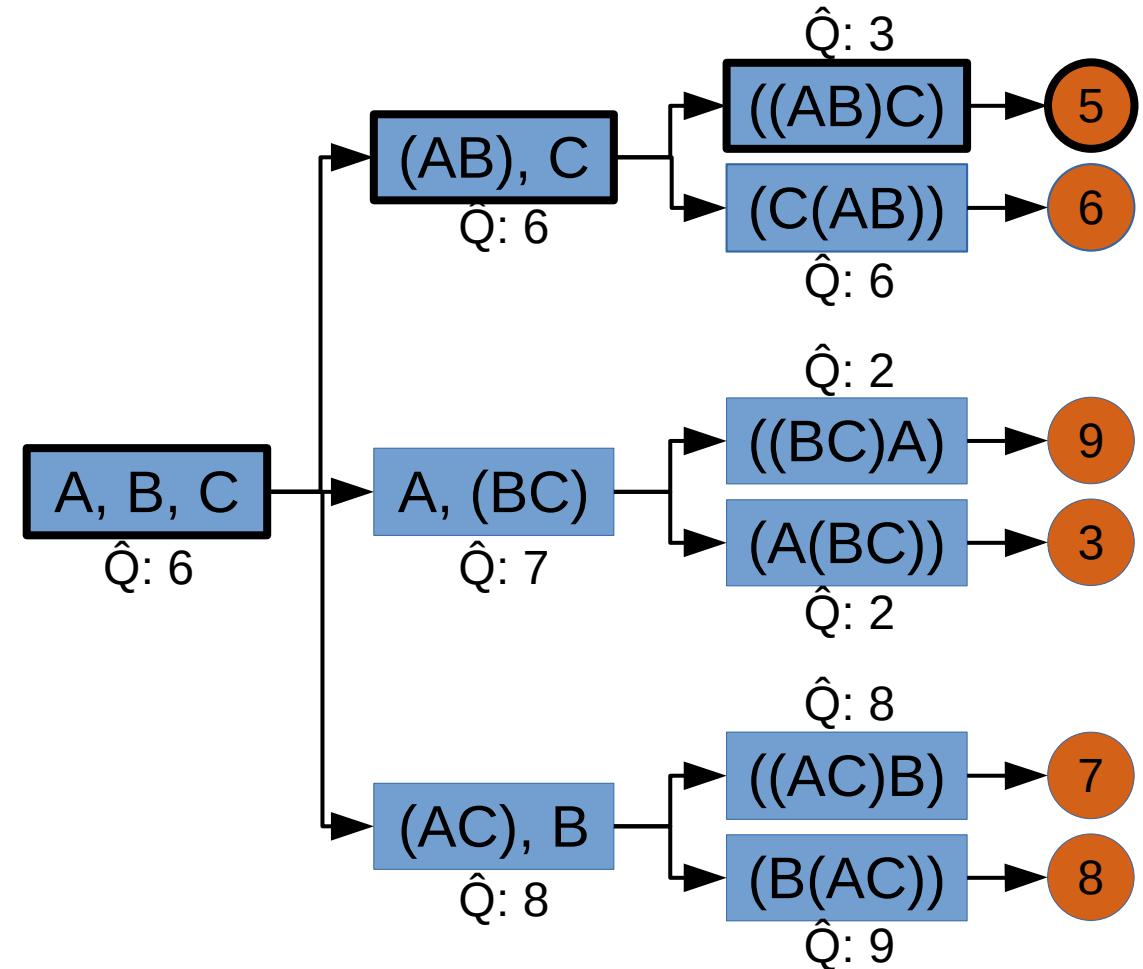


Deep reinforcement learning

Approximation, \hat{Q} .

- 1) initialize \hat{Q}_0
- 2) play 1 round with \hat{Q}_0
- 3) use obs. to train \hat{Q}_1
 - eg., $\hat{Q}_1((C(AB)) = 6$
 - $\hat{Q}_1(A, (BC)) = 6$
- 4) play 1 round with \hat{Q}_1

Deep Reinforcement Learning



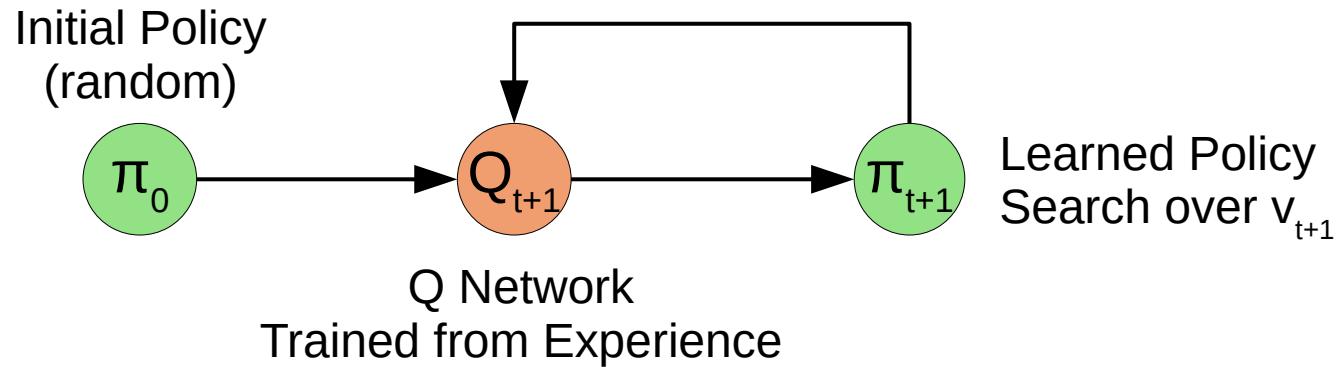
Deep reinforcement learning

Approximation, \hat{Q} .

- 1) initialize \hat{Q}_0
- 2) play 1 round with \hat{Q}_0
- 3) use obs. to train \hat{Q}_1
 - eg., $\hat{Q}_1((C(AB)) = 6$
 - $\hat{Q}_1(A, (BC)) = 6$
- 4) play 1 round with \hat{Q}_1
- 5) repeat

Deep Reinforcement Learning

- Value iteration

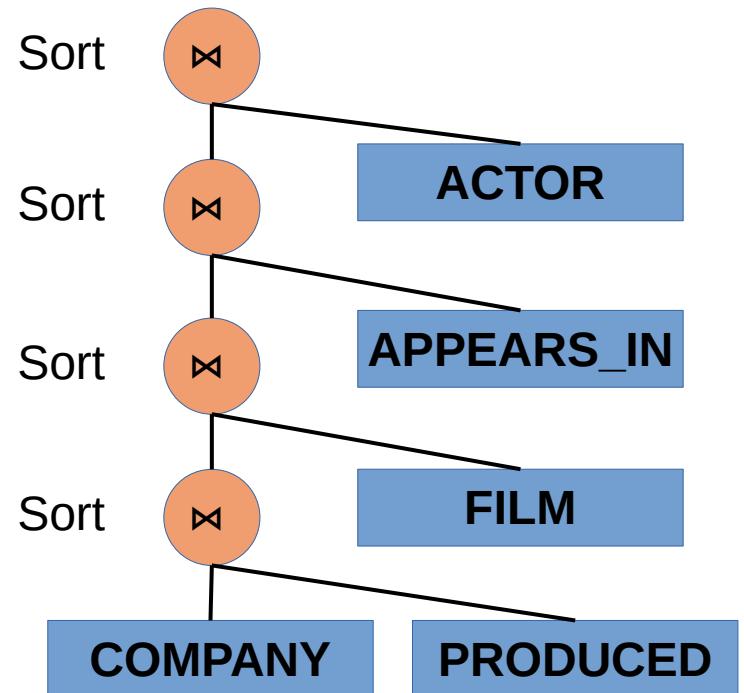


Inductive Bias

- How should we approximate the Q function?
- Option 1
 - Flatten the state into a vector
 - Use a fully connected neural network
- Not really how deep learning becomes successful
- Option 2
 - Try to find the right *inductive bias*
 - Build an intuitive network architecture

Tree Convolution

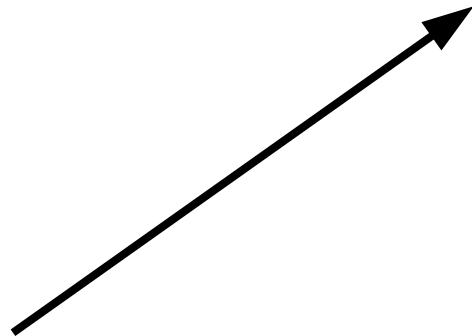
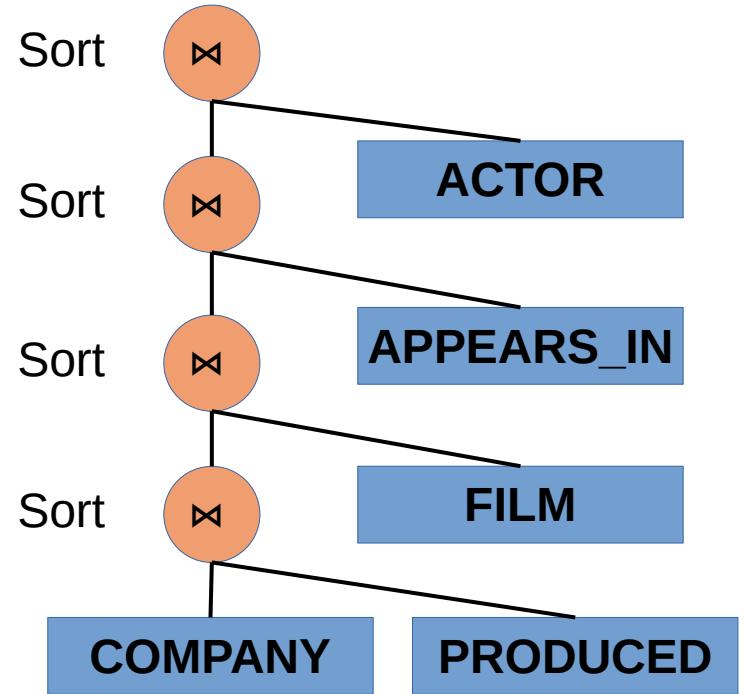
- How do we come up with a good inductive bias for query plans?



Tree Convolution

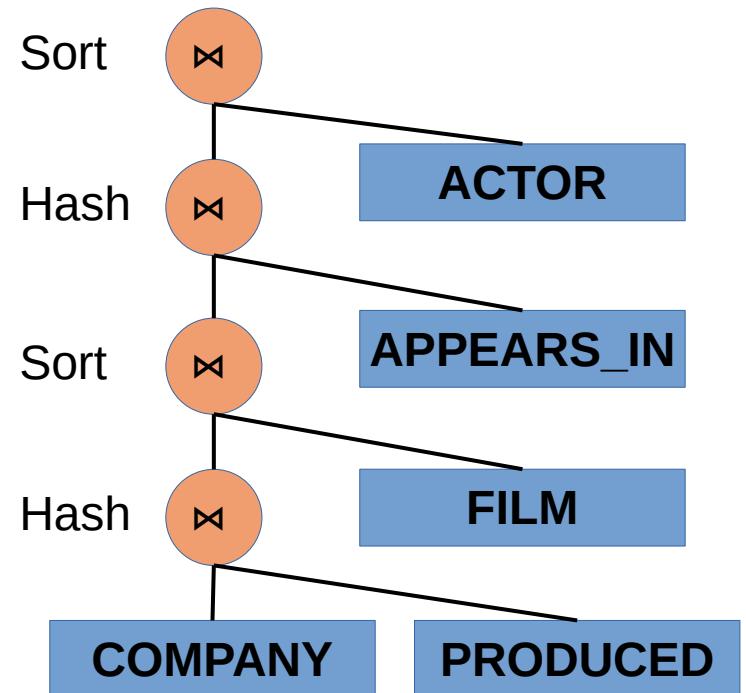
- How do we come up with a good inductive bias for query plans?

“Many stacked sort operators – possibly avoids a resort.”



Tree Convolution

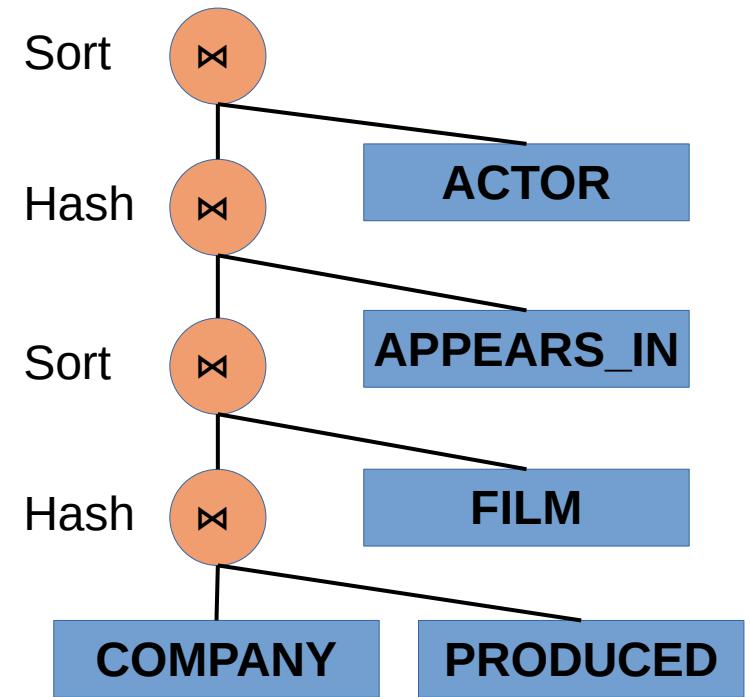
- How do we come up with a good inductive bias for query plans?



Tree Convolution

- How do we come up with a good inductive bias for query plans?

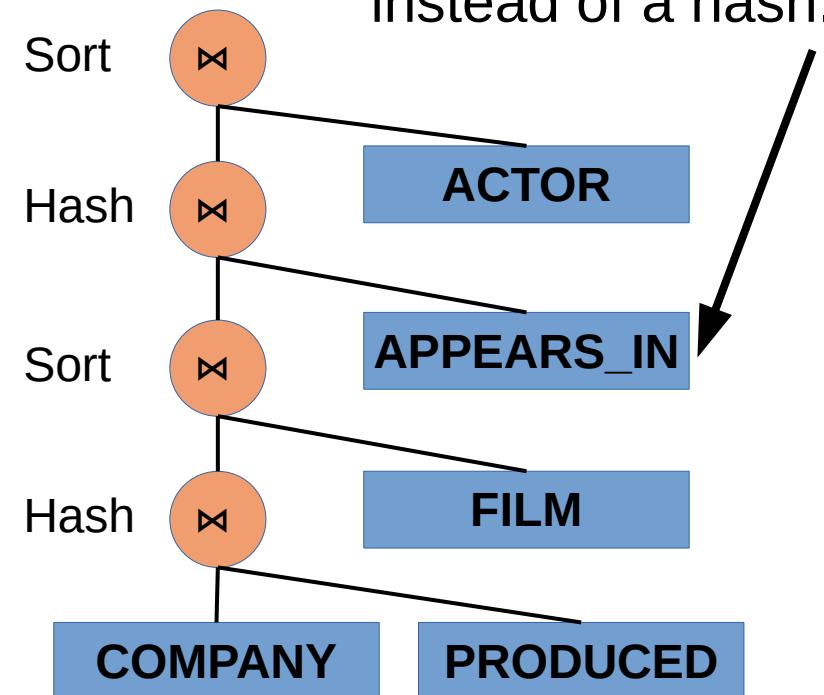
“Hash then sort, 100% requires rehash or resort.”



Tree Convolution

- How do we come up with a good inductive bias for query plans?

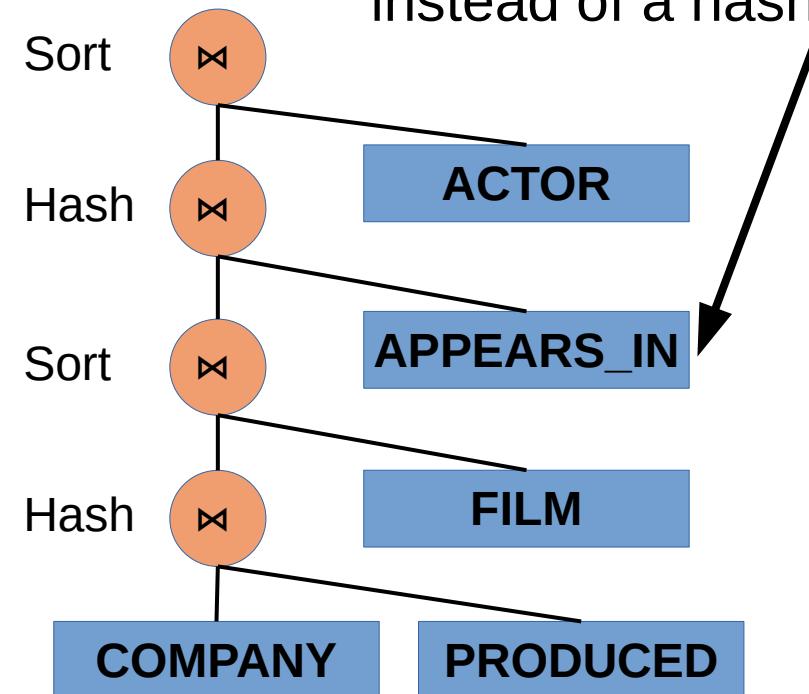
“Hash then sort, 100% requires rehash or resort.”



Tree Convolution

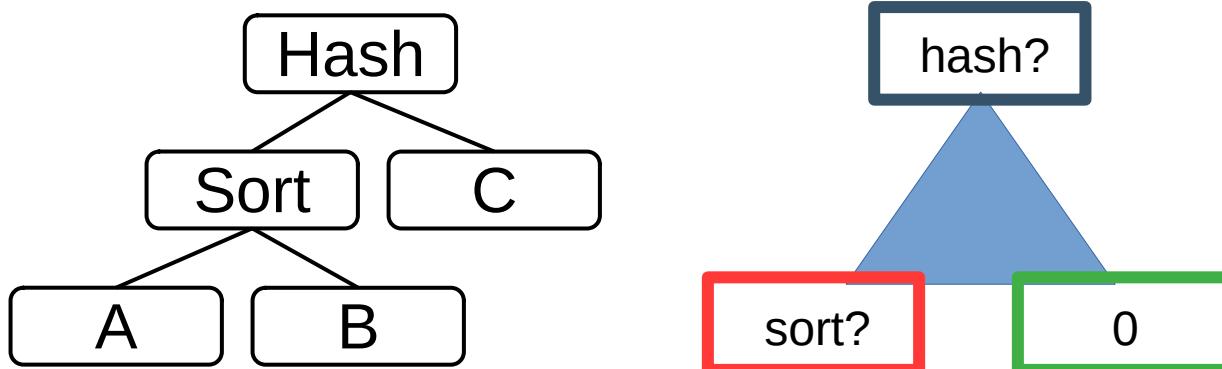
- How do we come up with a good inductive bias for query plans?

“Hash then sort, 100% requires rehash or resort.”



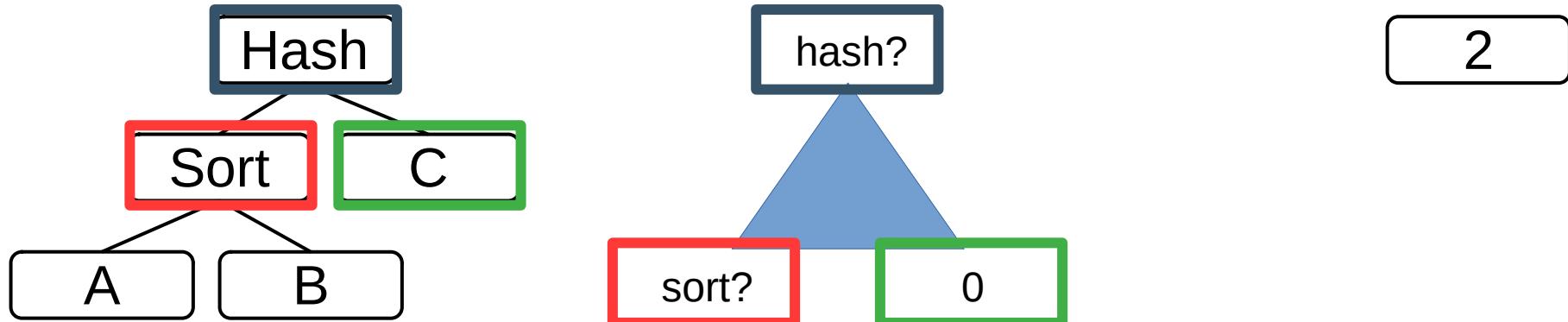
Experts examine *local structure* first, then look to higher level features.

Tree Convolution



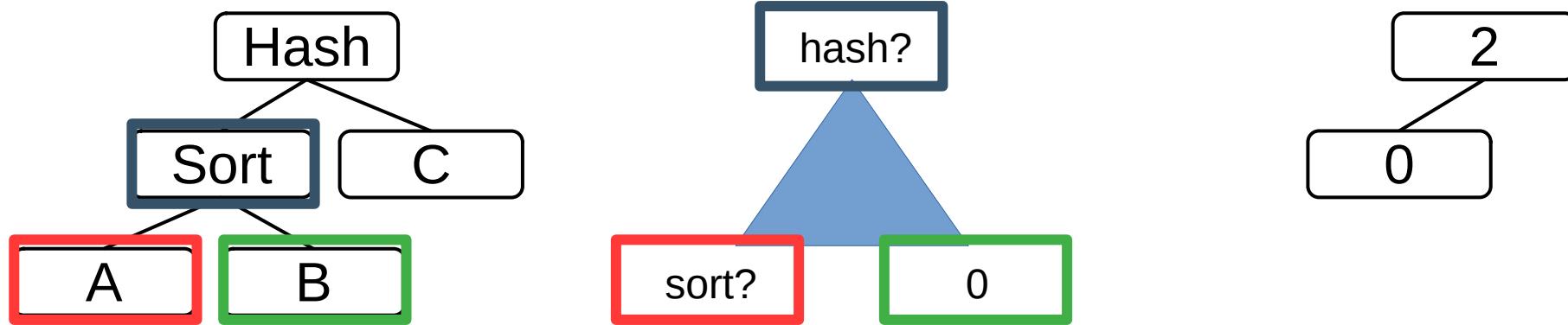
Detects a hash on top of a sort

Tree Convolution



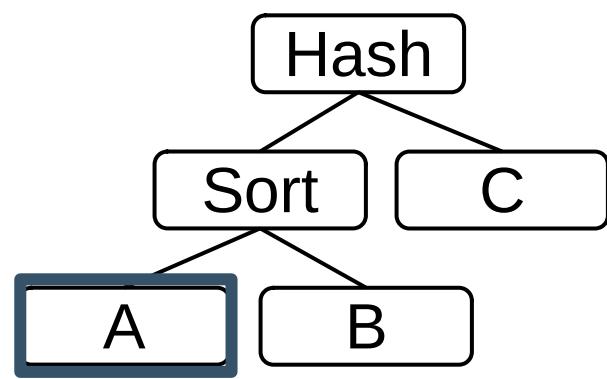
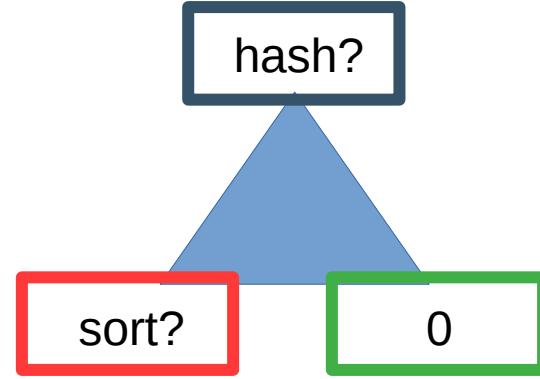
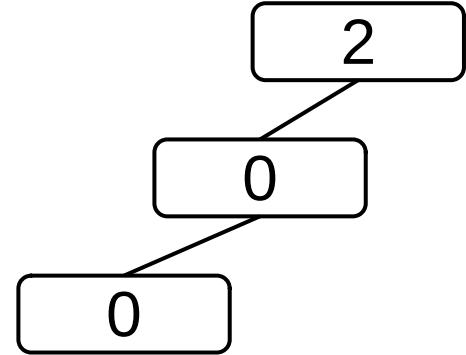
Detects a hash on top of a sort

Tree Convolution



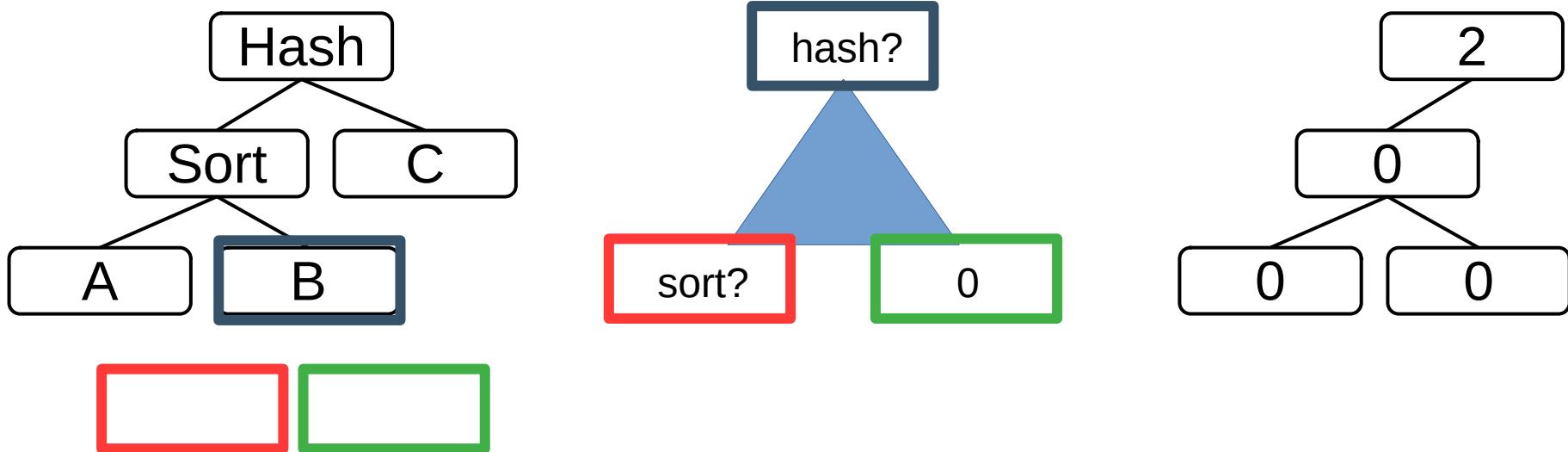
Detects a hash on top of a sort

Tree Convolution



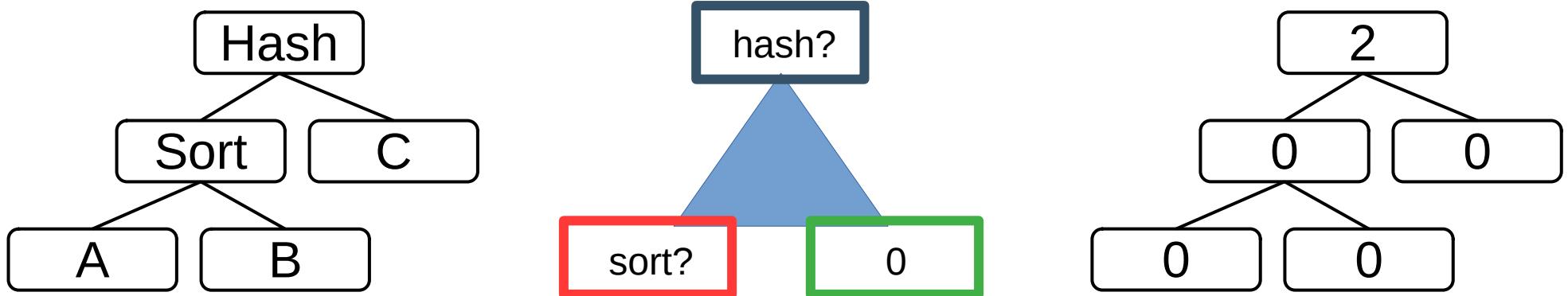
Detects a hash on top of a sort

Tree Convolution



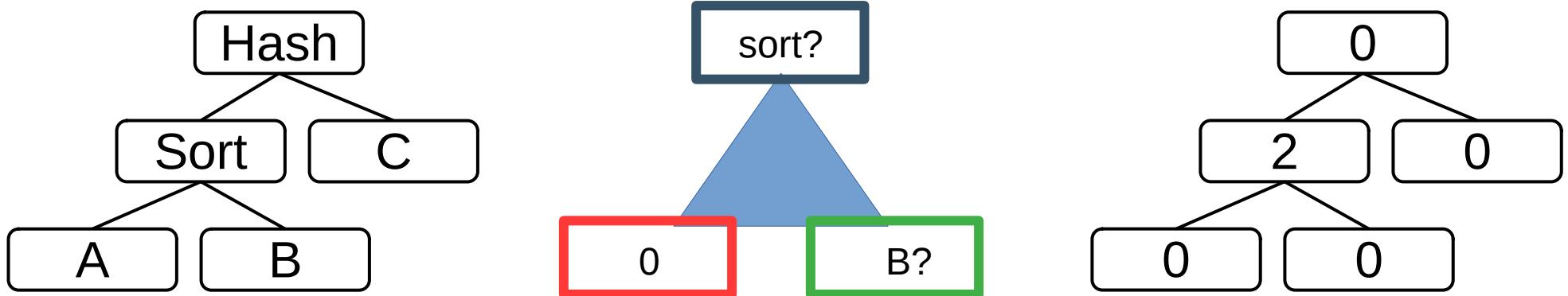
Detects a hash on top of a sort

Tree Convolution



Detects a hash on top of a sort

Tree Convolution

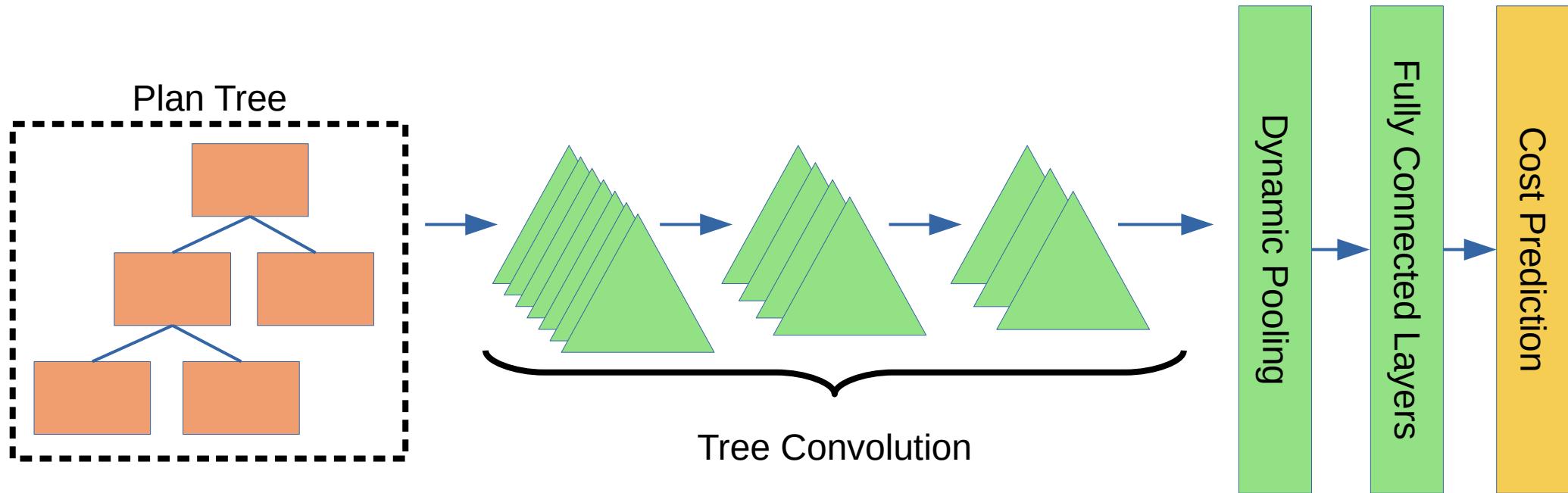


Detects a merge join with B on the right

Tree Convolution

- Like image convolution, filter weights are:
 - Automatically learned
 - Stacked (to learn higher-level features)
- Efficiently vectorized on a GPU

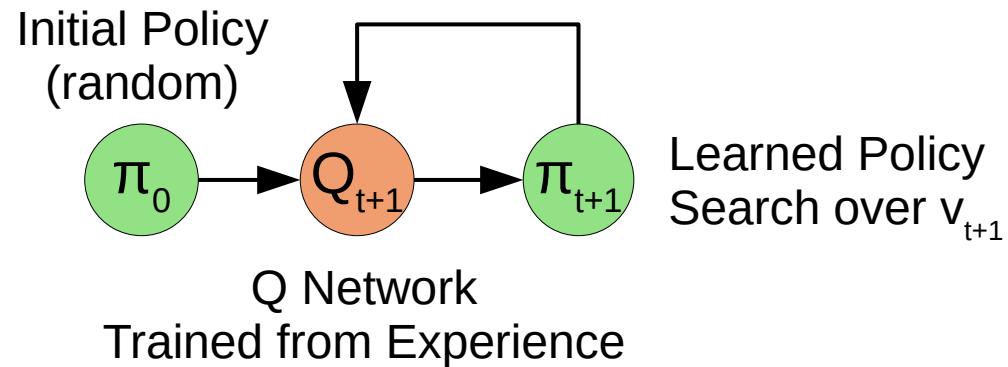
Neo



Value network architecture (used to approximate Q)

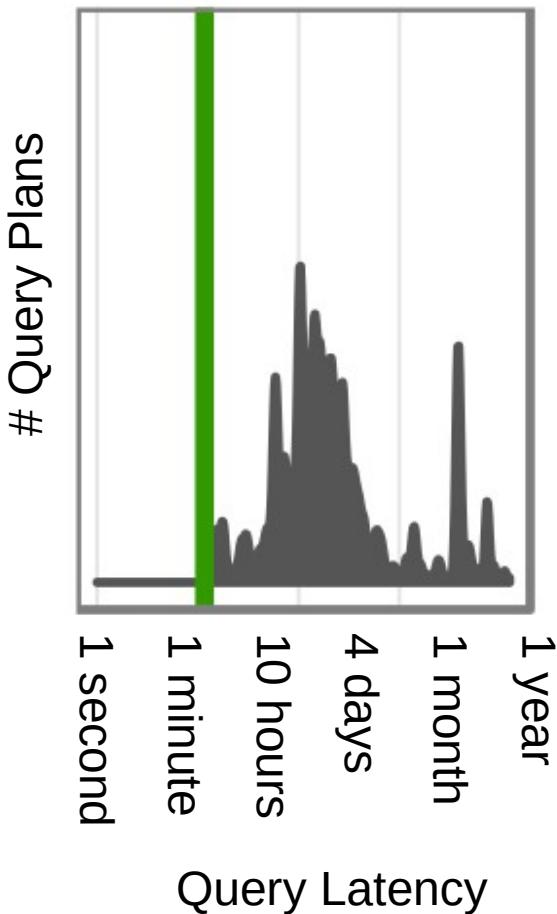
Random Policies

- DRL is *very sample inefficient*
 - You have to play for a long time before you get good.
- In QO, **doing worse takes longer!**
 - Cannot afford a random initial policy.



Random Policies

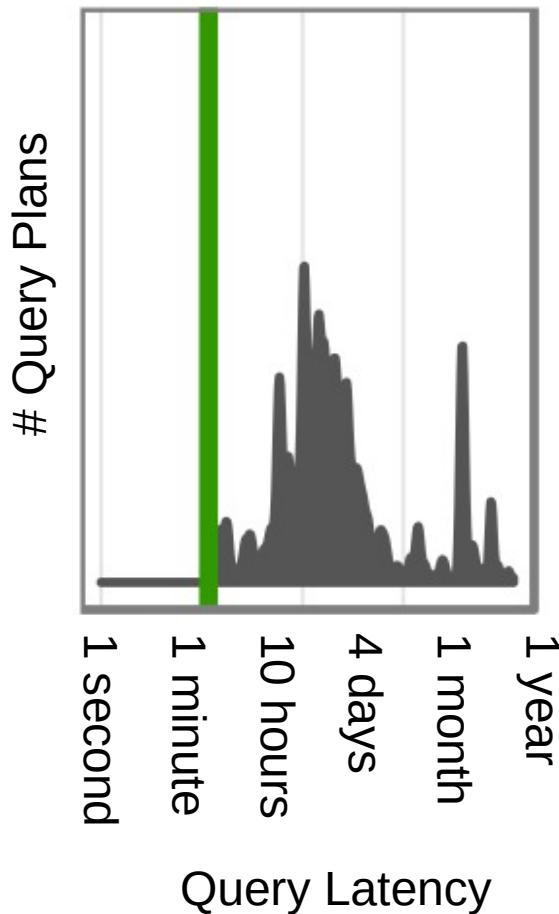
- DRL is *very sample inefficient*
 - You have to play for a long time before you get good.
- In QO, **doing worse takes longer!**
 - Cannot afford a random initial policy.



* not the exact histogram... credit to Leis et al.

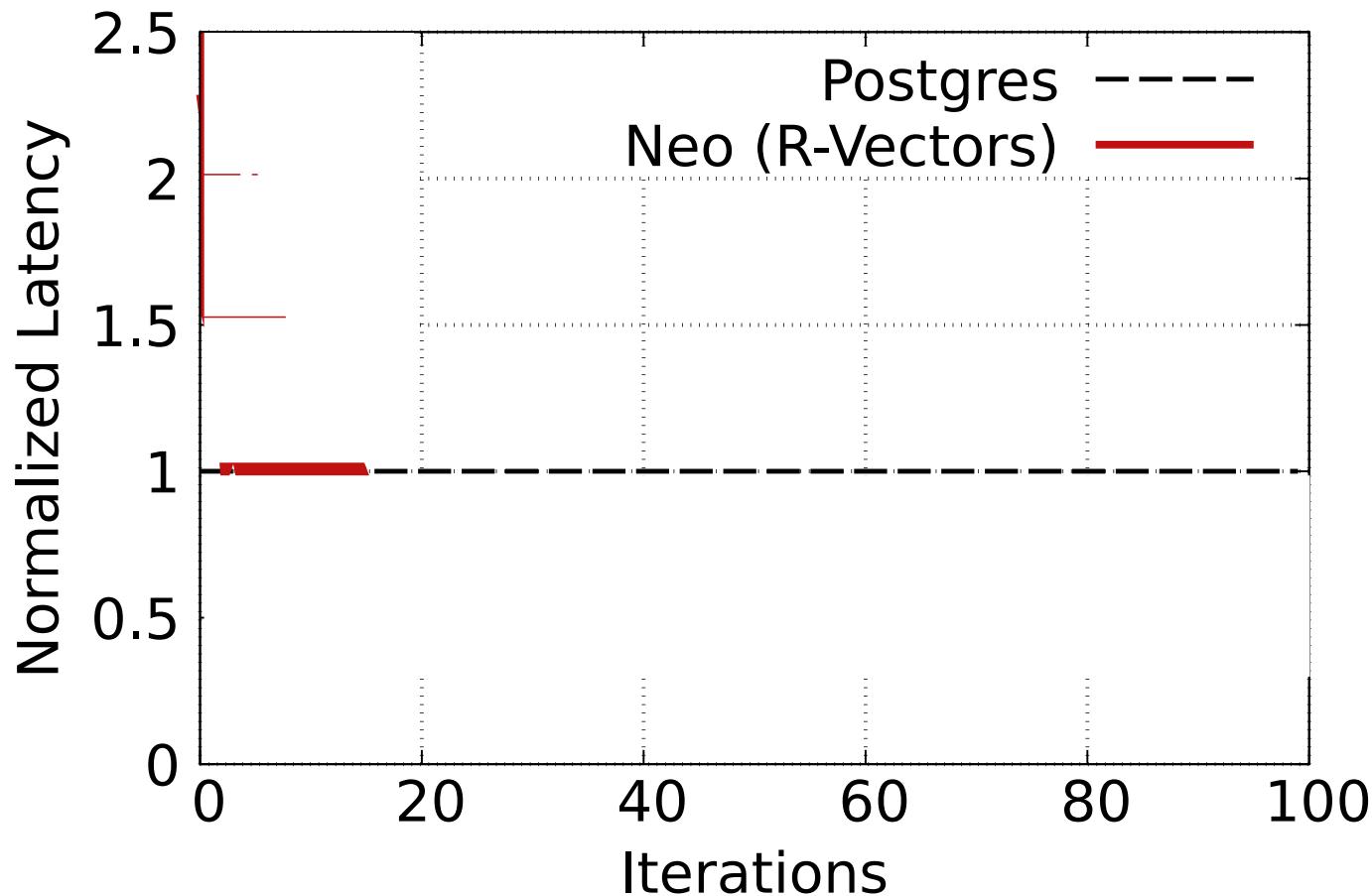
Random Policies

- Heuristic query optimizers have been around for a long time.
 - Some are very simple, like Selinger et al., '89
 - This is the green line.
- So instead of starting from random...
 - Use a simple heuristic system to bootstrap our policy.



* not the exact histogram... credit to Leis et al.

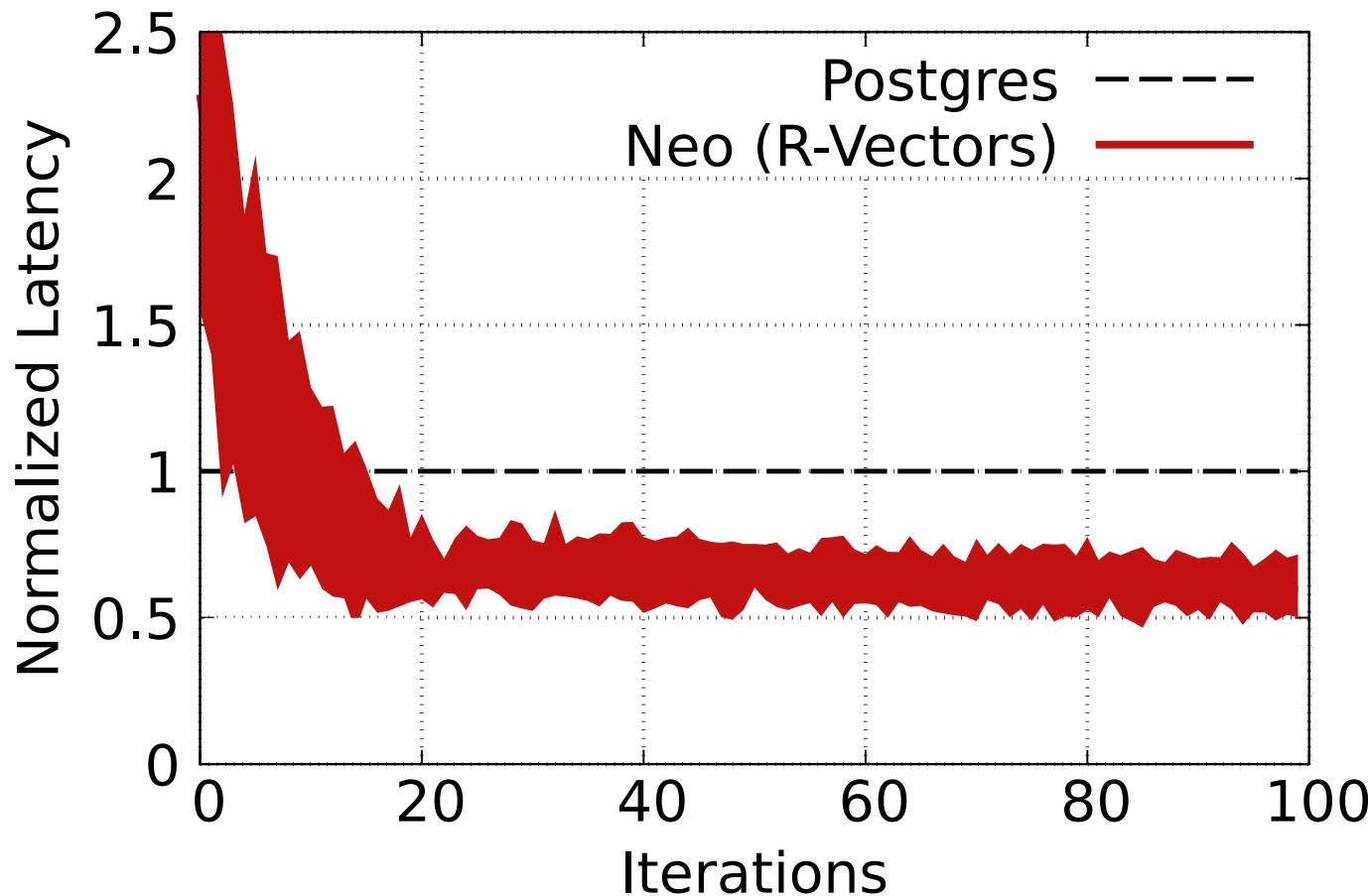
Experiments



1 = performance of PG optimizer

Neo trained with PG optimizer as expert on small sample beforehand.

Experiments

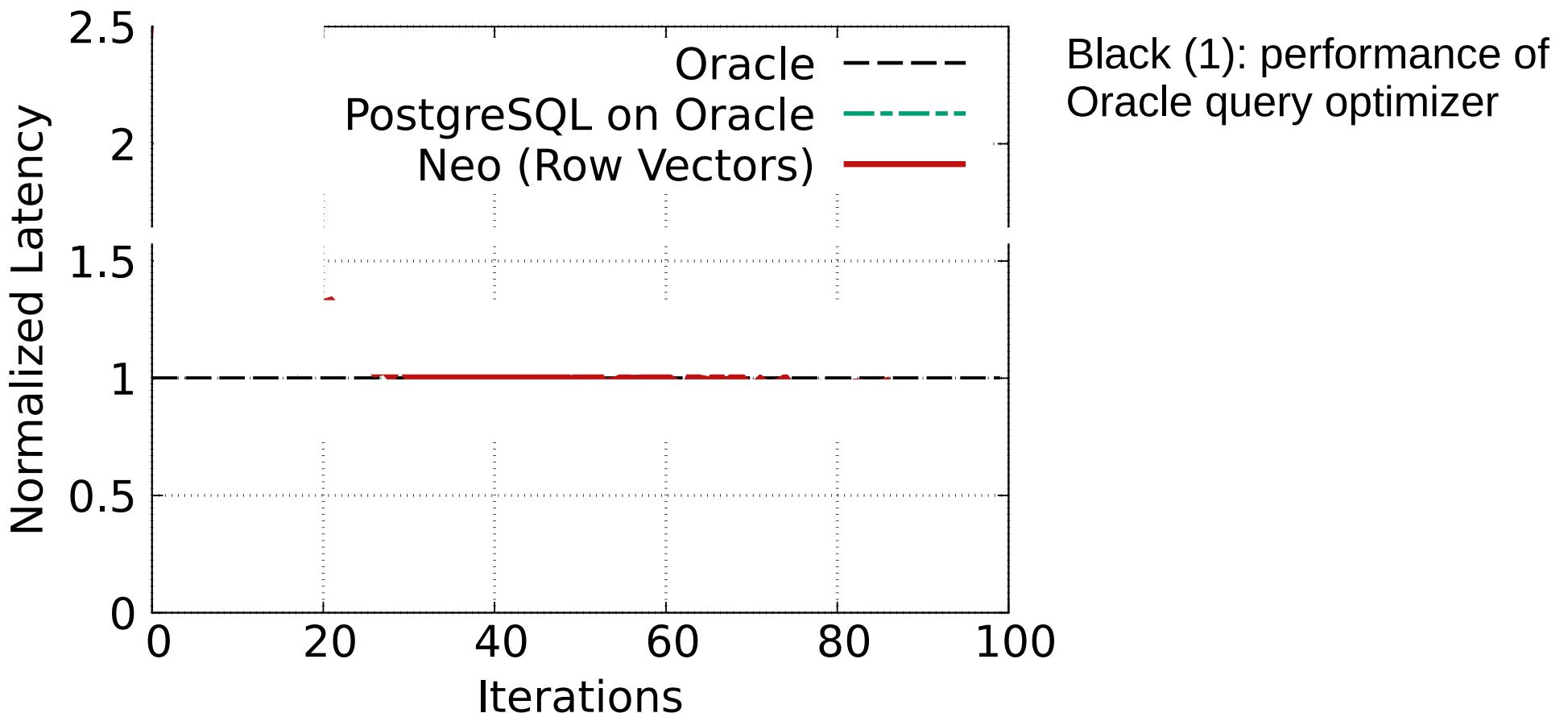


1 = performance of PG optimizer

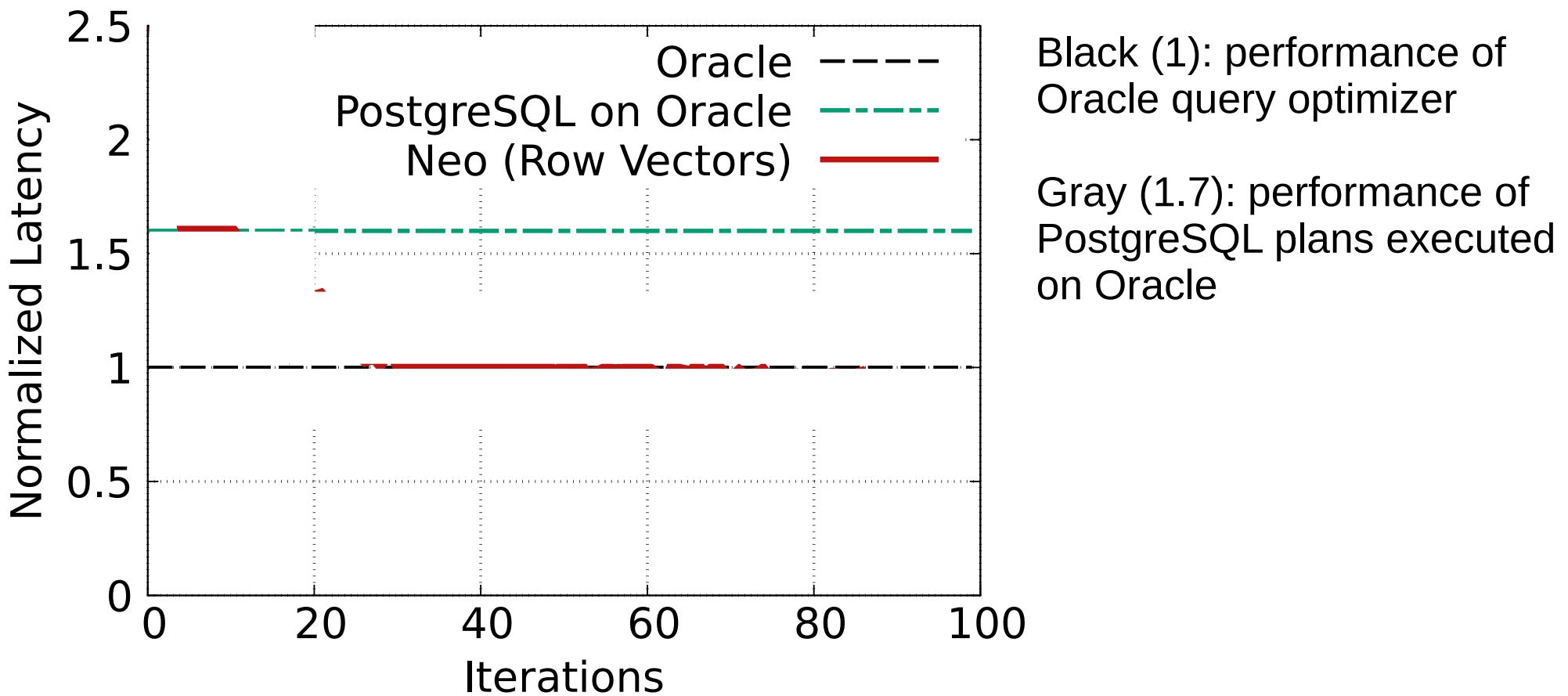
Neo trained with PG optimizer as expert on small sample beforehand.

On test queries, Neo outperforms PG 15-25%.

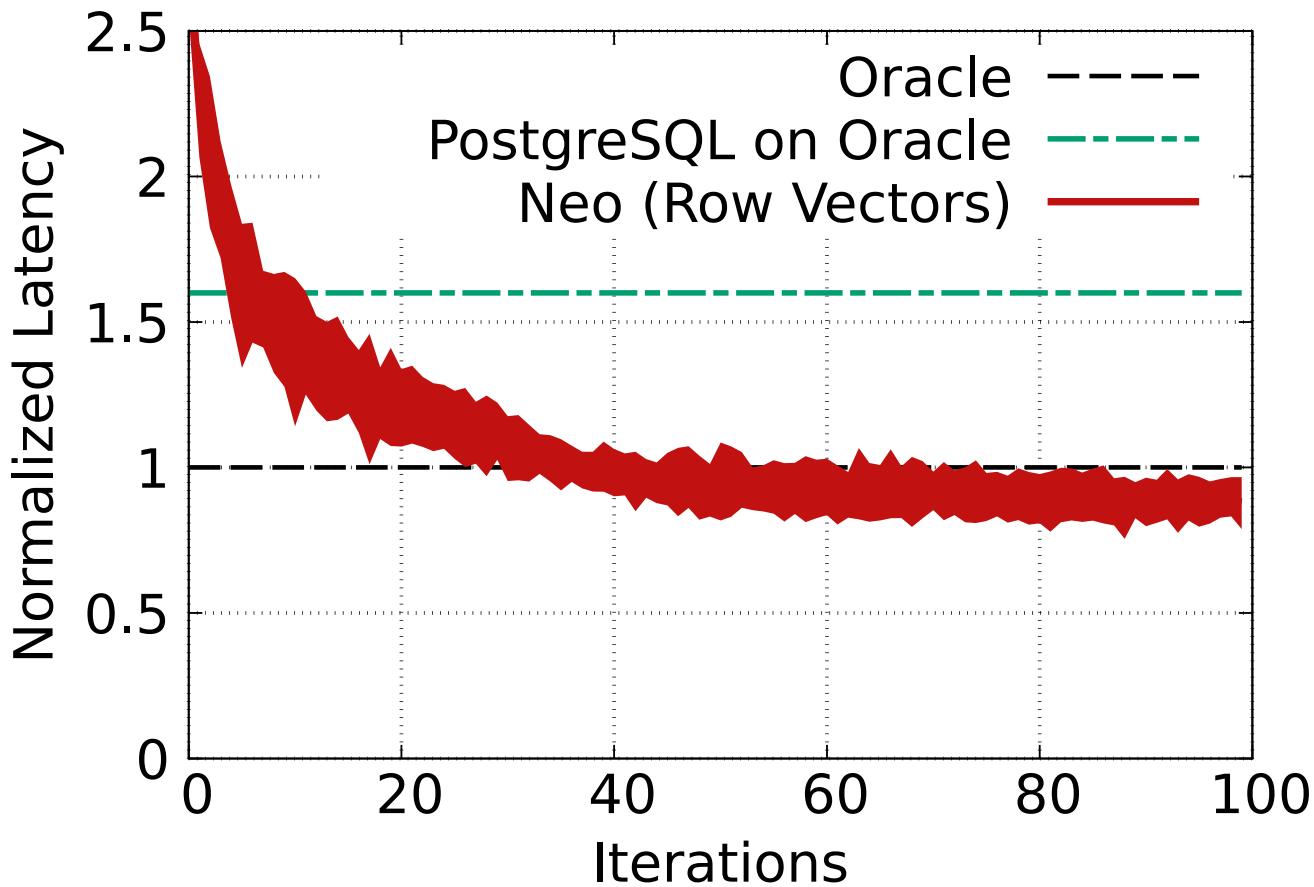
Experiments



Experiments



Experiments

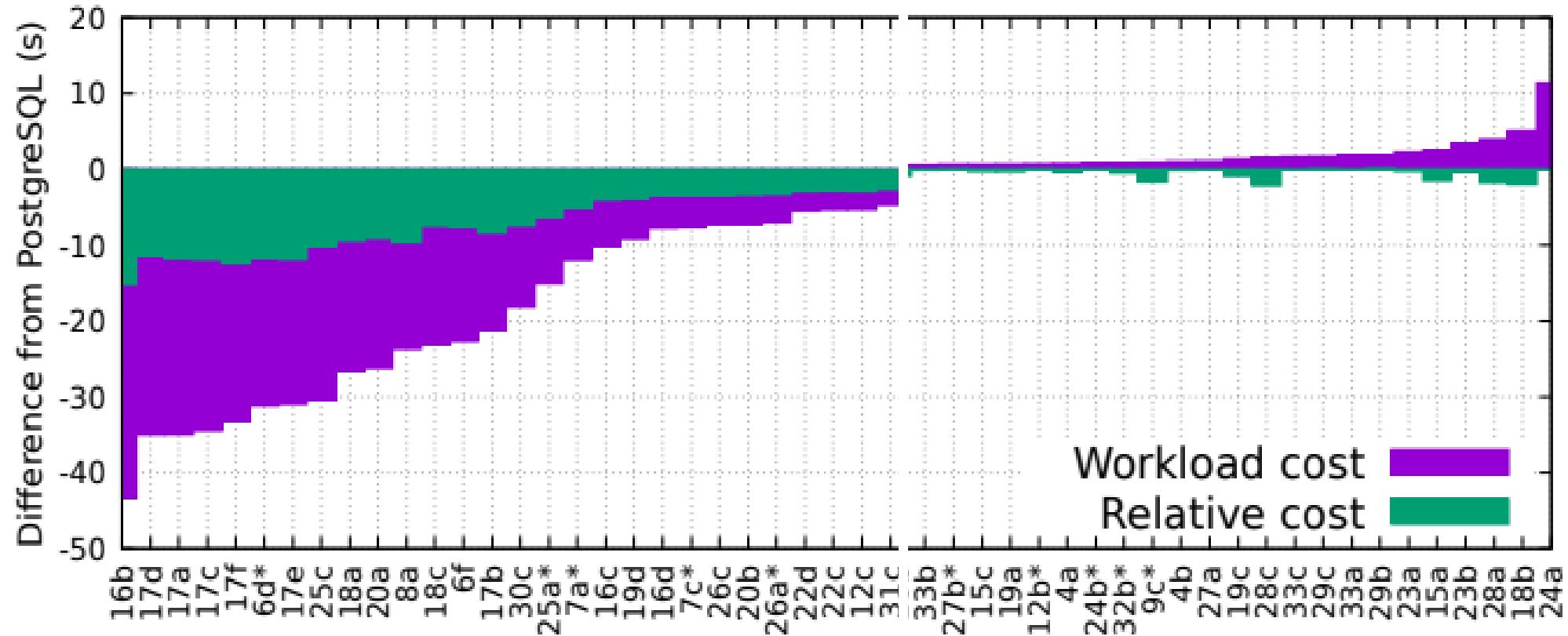


Black (1): performance of Oracle query optimizer

Green (1.7): performance of PostgreSQL plans executed on Oracle

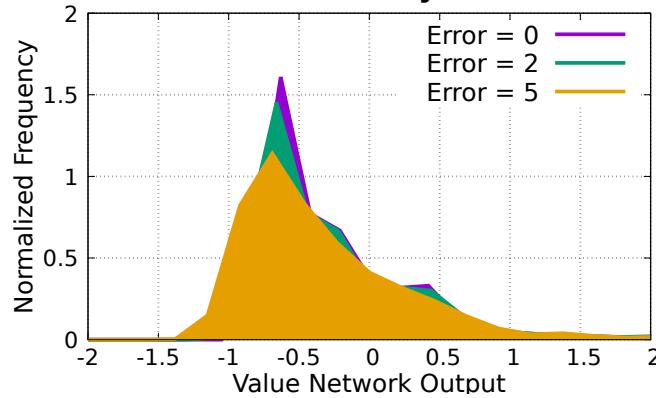
Red: Performance of Neo over time

Experiments

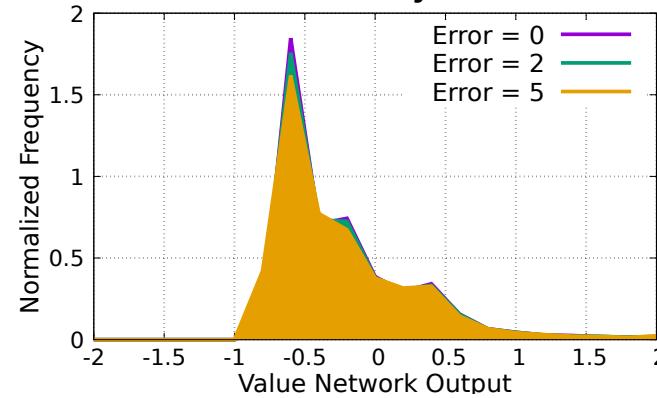


Experiments

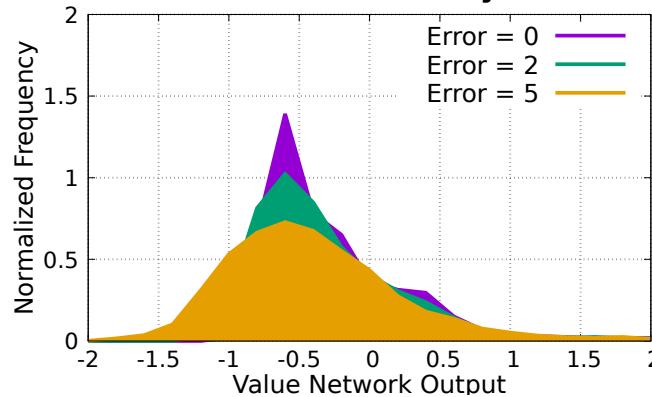
PG, ≤ 3 joins



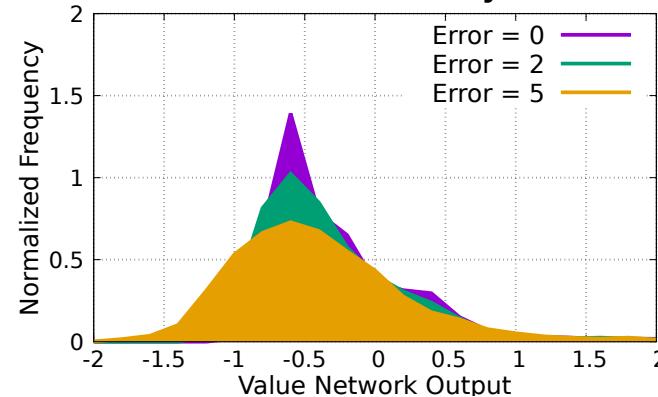
PG, > 3 joins



True card, ≤ 3 joins



True card, > 3 joins



Conclusions

- Neo: first learned end-to-end optimizer
- Achieves performance on-par with SOTA commercial query optimizers
- Limitations & future work
 - Depends on an expert
 - Fixed schema
 - Concurrent queries

That's all!

- Neo: A Learned Query Optimizer
- A purely-learned policy with SOTA performance
- Me: Ryan Marcus (ryanmarcus@csail.mit.edu)
- Twitter: @RyanMarcus (web: <http://rm.cab>)
- These slides: <http://rm.cab/neovldb19>
- Paper: <http://rm.cab/neo>