

Neo: A Learned Query Optimizer

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang,
Mohammad Alizadeh, Tim Kraska,

Olga Papaemmanouil, Nesime Tatbul

ryanmarcus@csail.mit.edu
Twitter: @RyanMarcus

Paper: http://rm.cab/neo
Slides: http://rm.cab/neovldb19

mailto:ryanmarcus@csail.mit.edu
http://rm.cab/neo
http://rm.cab/neovldb19

Query Optimizers
● Transform SQL into a query plan
● HUGE effort!

– 42K LOC in PG
– 1M+ SQL Server
– 45-55 FTEs, Oracle (~ $5mil/year)

● Requires per DB tuning
– PG: 15% bump
– Oracle: 22% bump
– SQL Server: 18% bump

SELECT *
FROM t1, t2 WHERE…

Query Optimizer

Classic Query Optimizers
● Cardinality estimation models

– Histograms
– Uniformity
– MFVs

● Cost models
– Polynomials
– Hand tuned

● DP Search
– NP-Hard

Cardinality
Estimation

DP Search

Cost
Model

Neo
● No cost models, cardinality estimation or exponential search.

– Previous: can replace each with a learned system in isolation
● Unclear benefit on query latency

– Neo is first to show we can have all learned everything.
● Optimizing query latency directly, end-to-end

● Automatic per-DB tuning
– Adaption to the user’s workflow and data

● Headline result: matches or exceeds the performance of SOTA query
optimizers within 24hrs of training.

Neo

E
xpertise

R
un

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

ea
rc

h

V
al

u
e

M
od

e
l

Prediction

Selected plan

E
xp

erienc e
Latency

User Query

Execution Engine

Neo

E
xpertise

R
un

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

ea
rc

h

V
al

u
e

M
od

e
l

Prediction

Selected plan

E
xp

erienc e
Latency

User Query

1. We observe how a basic
query optimizer handles a
sample workload.

Execution Engine

Neo

E
xpertise

R
un

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

ea
rc

h

V
al

u
e

M
od

e
l

Prediction

Selected plan

E
xp

erienc e
Latency

User Query

1. We observe how a basic
query optimizer handles a
sample workload.

2. We train a combination of a
value model and a plan search
module to emulate the expert.

Execution Engine

Neo

E
xpertise

R
un

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

ea
rc

h
Execution Engine

V
al

u
e

M
od

e
l

Prediction

Selected plan

E
xp

erienc e
Latency

User Query

1. We observe how a basic
query optimizer handles a
sample workload.

2. We train a combination of a
value model and a plan search
module to emulate the expert.

3. We create a feedback loop
where we refine the value
model using real query latency
on user-submitted queries.

This Talk
● First, how to represent QO as an RL problem? (MDP)
● Neo is designed around three principles:

– Find the right inductive bias
● Fully-connected neural networks? Never heard of ‘em.

– Learning from demonstration
● Watch masters. Emulate masters. Surpass masters.

– Learn embeddings
● No histograms, no exception lists. Learned models.

See paper for details. ☺

Just an overview today.

Query Optimization as an MDP
● DB assumptions

– Binary query plan trees
– Non-distributed
– Fixed # join operators
– Equi-joins only

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_IN

ACTOR
Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R1

R2

R3

R4

R5

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_IN

ACTOR
Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R1

R2

R3

R4

R5

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R3

R4

R5

Hash ⋈

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort

R2

R3

R4

Hash ⋈
R1

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort

R2

R3

R4

Hash ⋈
R1

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort

R3

Hash ⋈
R1

Sort ⋈
R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

R3

Hash ⋈
R1

Sort ⋈
R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

R3

Hash ⋈
R1

Sort ⋈
R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort

Hash ⋈
R1

Sort ⋈

Sort ⋈
R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

Hash ⋈
R1

Sort ⋈

Sort ⋈
R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

Hash ⋈
R1

Sort ⋈

Sort ⋈
R2

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

Hash ⋈

Sort ⋈

Sort ⋈

⋈Hash

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Every previous state
had reward 0

Now, we execute the
program and record
the latency.

Reward is -latency.

Hash ⋈

Sort ⋈

Sort ⋈

⋈Hash

(ACTORS ⋈ APPEARS_IN ⋈ FILM ⋈ PRODUCED ⋈ COMPANY)

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Supp. an oracle Q(·) which
maps each state to the best
possible latency achievable
from that state.

Of course, there’s no Q(·).

… so we will learn an
approximation, Q̂

Q: 3

Q: 5

Q: 3

Q: 7

Q: 5

Q: 6

Q: 9

Q: 3

Q: 7

Q: 8

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Approximation, Q̂.
1) initialize Q̂

0

Q̂: 8

Q̂: 2

Q̂: 9

Q̂: 3

Q̂: 10

Q̂: 1

Q̂: 8

Q̂: 5

Q̂: 4

Q̂: 6

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Approximation, Q̂.
1) initialize Q̂

0

2) play 1 round with Q̂
0

Q̂: 8

Q̂: 2

Q̂: 9

Q̂: 3

Q̂: 10

Q̂: 1

Q̂: 8

Q̂: 5

Q̂: 4

Q̂: 6

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Approximation, Q̂.
1) initialize Q̂

0

2) play 1 round with Q̂
0

Q̂: 8

Q̂: 2

Q̂: 9

Q̂: 3

Q̂: 10

Q̂: 1

Q̂: 8

Q̂: 5

Q̂: 4

Q̂: 6

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Approximation, Q̂.
1) initialize Q̂

0

2) play 1 round with Q̂
0

3) use obs. to train Q̂
1

 eg., Q̂
1
((C(AB)) = 6

 Q̂
1
(A, (BC)) = 6

Q̂: 8

Q̂: 2

Q̂: 9

Q̂: 3

Q̂: 10

Q̂: 1

Q̂: 8

Q̂: 5

Q̂: 4

Q̂: 6

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Approximation, Q̂.
1) initialize Q̂

0

2) play 1 round with Q̂
0

3) use obs. to train Q̂
1

 eg., Q̂
1
((C(AB)) = 6

 Q̂
1
(A, (BC)) = 6

4) play 1 round with Q̂
1

Q̂: 6

Q̂: 6

Q̂: 7

Q̂: 8

Q̂: 3

Q̂: 6

Q̂: 2

Q̂: 2

Q̂: 8

Q̂: 9

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Approximation, Q̂.
1) initialize Q̂

0

2) play 1 round with Q̂
0

3) use obs. to train Q̂
1

 eg., Q̂
1
((C(AB)) = 6

 Q̂
1
(A, (BC)) = 6

4) play 1 round with Q̂
1

Q̂: 6

Q̂: 6

Q̂: 7

Q̂: 8

Q̂: 3

Q̂: 6

Q̂: 2

Q̂: 2

Q̂: 8

Q̂: 9

Deep Reinforcement Learning

A, B, C

(AB), C
((AB)C)

(C(AB))

A, (BC)
((BC)A)

(A(BC))

(AC), B
((AC)B)

(B(AC))

5

6

9

3

7

8

Deep reinforcement learning

Approximation, Q̂.
1) initialize Q̂

0

2) play 1 round with Q̂
0

3) use obs. to train Q̂
1

 eg., Q̂
1
((C(AB)) = 6

 Q̂
1
(A, (BC)) = 6

4) play 1 round with Q̂
1

5) repeat

Q̂: 6

Q̂: 6

Q̂: 7

Q̂: 8

Q̂: 3

Q̂: 6

Q̂: 2

Q̂: 2

Q̂: 8

Q̂: 9

Deep Reinforcement Learning
● Value iteration

π
0

Initial Policy
(random)

Q
t+1

Q Network
Trained from Experience

π
t+1

Learned Policy
Search over v

t+1

Inductive Bias
● How should we approximate the Q function?
● Option 1

– Flatten the state into a vector
– Use a fully connected neural network

● Not really how deep learning becomes successful
● Option 2

– Try to find the right inductive bias
– Build an intuitive network architecture

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Sort

Sort

Sort

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Sort

Sort

Sort

“Many stacked sort
operators – possibly
avoids a resort.”

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

“APPEARS_IN” is
presorted on disk –
should use a sort
instead of a hash.

Tree Convolution
● How do we come up

with a good inductive
bias for query plans?

Sort

COMPANY PRODUCED

FILM

APPEARS_IN

ACTOR

⋈

⋈

⋈

⋈

Hash

Sort

Hash

“Hash then sort, 100%
requires rehash or
resort.”

“APPEARS_IN” is
presorted on disk –
should use a sort
instead of a hash.

Experts examine local structure first,
then look to higher level features.

Tree Convolution

hash?

sort? 0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2

0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2

0

0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2

0

0 0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

hash?

sort? 0

2

0 0

0 0

Hash

Sort C

A B

Detects a hash on top of a sort

Tree Convolution

sort?

0 B?

0

2 0

0 0

Hash

Sort C

A B

Detects a merge join with B on the right

Tree Convolution
● Like image convolution, filter weights are:

– Automatically learned
– Stacked (to learn higher-level features)

● Efficiently vectorized on a GPU

Neo

Value network architecture (used to approximate Q)

Plan Tree

Tree Convolution

F
ully C

o nnecte d Laye rs

D
ynam

i c P
ooli ng

C
ost P

r ediction

Random Policies
● DRL is very sample

inefficient
– You have to play for a long

time before you get good.

● In QO, doing worse
takes longer!
– Cannot afford a random

initial policy.

π
0

Initial Policy
(random)

Q
t+1

Q Network
Trained from Experience

π
t+1

Learned Policy
Search over v

t+1

Random Policies
● DRL is very sample

inefficient
– You have to play for a long

time before you get good.

● In QO, doing worse
takes longer!
– Cannot afford a random

initial policy.

1 secon d

1 m
inut e

10 hour s

4 days

1 m
onth

1 year

Query Latency

Q

ue
ry

 P
la

ns

* not the exact histogram… credit to Leis et al.

Random Policies
● Heuristic query optimizers have

been around for a long time.
– Some are very simple, like

Selinger et al., ‘89
– This is the green line.

● So instead of starting from
random…
– Use a simple heuristic system to

bootstrap our policy.

1 secon d

1 m
inut e

10 hour s

4 days

1 m
onth

1 year

Query Latency

Q

ue
ry

 P
la

ns

* not the exact histogram… credit to Leis et al.

Experiments

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Postgres
Neo (R-Vectors)

1 = performance of
PG optimizer

Neo trained with PG
optimizer as expert
on small sample
beforehand.

Experiments

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Postgres
Neo (R-Vectors)

1 = performance of
PG optimizer

Neo trained with PG
optimizer as expert
on small sample
beforehand.

On test queries,
Neo outperforms
PG 15-25%.

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo (Row Vectors)

Experiments
Black (1): performance of
Oracle query optimizer

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo (Row Vectors)

Experiments
Black (1): performance of
Oracle query optimizer

Gray (1.7): performance of
PostgreSQL plans executed
on Oracle

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
liz

e
d

 L
a
te

n
cy

Iterations

Oracle
PostgreSQL on Oracle

Neo (Row Vectors)

Experiments
Black (1): performance of
Oracle query optimizer

Green (1.7): performance of
PostgreSQL plans executed
on Oracle

Red: Performance of Neo
over time

Experiments

Experiments

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
liz

e
d

 F
re

q
u
e
n
cy

Value Network Output

Error = 0
Error = 2
Error = 5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
liz

e
d

 F
re

q
u
e
n
cy

Value Network Output

Error = 0
Error = 2
Error = 5

PG, <= 3 joins PG, > 3 joins

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
liz

e
d

 F
re

q
u
e
n
cy

Value Network Output

Error = 0
Error = 2
Error = 5

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
N

o
rm

a
liz

e
d

 F
re

q
u
e
n
cy

Value Network Output

Error = 0
Error = 2
Error = 5

True card, <= 3 joins True card, > 3 joins

Conclusions
● Neo: first learned end-to-end optimizer
● Achieves performance on-par with SOTA commercial

query optimizers
● Limitations & future work

– Depends on an expert
– Fixed schema
– Concurrent queries

That’s all!
● Neo: A Learned Query Optimizer
● A purely-learned policy with SOTA performance

● Me: Ryan Marcus (ryanmarcus@csail.mit.edu)

● Twitter: @RyanMarcus (web: http://rm.cab)

● These slides: http://rm.cab/neovldb19

● Paper: http://rm.cab/neo

mailto:ryanmarcus@csail.mit.edu
http://rm.cab/
http://rm.cab/neovldb19
http://rm.cab/neo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

