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Query Optimizers
● Transform SQL into a query plan
● HUGE effort!

– 42K LOC in PG
– 1M+ SQL Server
– 45-55 FTEs, Oracle (~ $5mil/year)

● Requires per DB tuning
– PG: 15% bump
– Oracle: 22% bump
– SQL Server: 18% bump

SELECT * 
FROM t1, t2 WHERE… 

Query Optimizer



  

Classic Query Optimizers
● Cardinality estimation models

– Histograms 
– Uniformity
– MFVs

● Cost models
– Polynomials
– Hand tuned

● DP Search
– NP-Hard

Cardinality
Estimation

DP Search

Cost
Model



  

Neo
● No cost models, cardinality estimation or exponential search.

– Previous: can replace each with a learned system in isolation
● Unclear benefit on query latency

– Neo is first to show we can have all learned everything.
● Optimizing query latency directly, end-to-end

● Automatic per-DB tuning 
– Adaption to the user’s workflow and data

● Headline result: matches or exceeds the performance of SOTA query 
optimizers within 24hrs of training.
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1. We observe how a basic 
query optimizer handles a 
sample workload.

2. We train a combination of a 
value model and a plan search 
module to emulate the expert.

3. We create a feedback loop 
where we refine the value 
model using real query latency 
on user-submitted queries.



  

This Talk
● First, how to represent QO as an RL problem? (MDP)
● Neo is designed around three principles:

– Find the right inductive bias
● Fully-connected neural networks? Never heard of ‘em.

– Learning from demonstration
● Watch masters. Emulate masters. Surpass masters.

– Learn embeddings
● No histograms, no exception lists. Learned models.

See paper for details. ☺

Just an overview today.



  

Query Optimization as an MDP
● DB assumptions

– Binary query plan trees
– Non-distributed 
– Fixed # join operators
– Equi-joins only



  

Query Optimization as an MDP

COMPANY

PRODUCED

FILM

APPEARS_IN

ACTOR
Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R1

R2

R3

R4

R5

(ACTORS ⋈ APPEARS_IN  ⋈ FILM  ⋈ PRODUCED  ⋈ COMPANY)
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Query Optimization as an MDP

COMPANY

PRODUCEDFILM

APPEARS_INACTOR

Every previous state 
had reward 0

Now, we execute the 
program and record 
the latency.

Reward is -latency.

Hash ⋈

Sort ⋈

Sort ⋈

⋈Hash

(ACTORS ⋈ APPEARS_IN  ⋈ FILM  ⋈ PRODUCED  ⋈ COMPANY)
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Deep Reinforcement Learning
● Value iteration

π
0

Initial Policy
(random)

Q
t+1

Q Network
Trained from Experience

π
t+1

Learned Policy
Search over v

t+1



  

Inductive Bias
● How should we approximate the Q function?
● Option 1

– Flatten the state into a vector
– Use a fully connected neural network

● Not really how deep learning becomes successful 
● Option 2

– Try to find the right inductive bias
– Build an intuitive network architecture



  

Tree Convolution
● How do we come up 

with a good inductive 
bias for query plans?
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Tree Convolution
● How do we come up 

with a good inductive 
bias for query plans?
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“Hash then sort, 100% 
requires rehash or 
resort.”

“APPEARS_IN” is 
presorted on disk – 
should use a sort 
instead of a hash.

Experts examine local structure first, 
then look to higher level features.



  

Tree Convolution
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Tree Convolution
● Like image convolution, filter weights are:

– Automatically learned
– Stacked (to learn higher-level features)

● Efficiently vectorized on a GPU



  

Neo

Value network architecture (used to approximate Q)
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Random Policies
● DRL is very sample 

inefficient
– You have to play for a long 

time before you get good.

● In QO, doing worse 
takes longer!
– Cannot afford a random 

initial policy.
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Q Network
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Learned Policy
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Random Policies
● DRL is very sample 

inefficient
– You have to play for a long 

time before you get good.

● In QO, doing worse 
takes longer!
– Cannot afford a random 

initial policy.
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Random Policies
● Heuristic query optimizers have 

been around for a long time.
– Some are very simple, like 

Selinger et al., ‘89
– This is the green line.

● So instead of starting from 
random…
– Use a simple heuristic system to 

bootstrap our policy.
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Conclusions
● Neo: first learned end-to-end optimizer
● Achieves performance on-par with SOTA commercial 

query optimizers
● Limitations & future work

– Depends on an expert
– Fixed schema
– Concurrent queries



  

That’s all!
● Neo: A Learned Query Optimizer
● A purely-learned policy with SOTA performance

● Me: Ryan Marcus (ryanmarcus@csail.mit.edu)

● Twitter: @RyanMarcus (web: http://rm.cab)

● These slides: http://rm.cab/neovldb19  

● Paper: http://rm.cab/neo 

mailto:ryanmarcus@csail.mit.edu
http://rm.cab/
http://rm.cab/neovldb19
http://rm.cab/neo
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