Neo: A Learned Query Optimizer

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang,
Mohammad Alizadeh, Tim Kraska,
Olga Papaemmanouil, Nesime Tatbul

ryanmarcus@csail.mit.edu
Twitter: @RyanMarcus

Paper: http://rm.cab/neo
Slides: http://rm.cab/neovldbl9
DSAIL .

Data Systems and Al Lab

I
—_ —

@ Gor)g[e“ B® Microsoft

F=

e A T TS TYRUT
" t lx e randeis ,;/
(inte) - ﬂ
> /=

A

LABS Qs

mailto:ryanmarcus@csail.mit.edu
http://rm.cab/neo
http://rm.cab/neovldb19

Query Optimizers

* Transform SQL into a query plan SELECT *
« HUGE effort! FROM tl, t2Z2 WHERE..
- 42K LOC in PG

- 1M+ SQL Server
- 45-55 FTEs, Oracle (~ $5mil/year)

* Requires per DB tuning
- PG: 15% bump

— Oracle: 22% bump A.
- SQL Server: 18% bump A

Classic Query Optimizers

e Cardinality estimation models
- Histograms
- Uniformity

-MFVs

e Cost models
- Polynomials
- Hand tuned
* DP Search
- NP-Hard

Neo

* No cost models, cardinality estimation or exponential search.

- Previous: can replace each with a learned system in isolation
* Unclear benefit on query latency

- Neo is first to show we can have all learned everything.
* Optimizing query latency directly, end-to-end
e Automatic per-DB tuning
— Adaption to the user’s workflow and data

* Headline result: matches or exceeds the performance of SOTA query
optimizers within 24hrs of training.

Neo

1 i
S | . N R N ;Y
ampie i Expert He Heme 1 O
Workload D Q ' P> Optimizer > oo do &0 : <
" Executed Plans 1 3

1 1

; Y .
User Query [Q'| — % Featurizer < ' 5

m

! e B
I I 0] S ® 1=
1 © Prediction | = = 13
1 o @© ® 1 ®

1 = % a 1

! © nle ¢ ®) 1

1 > N 1

1 T ® &5 1

: - -— :

l--------------_------ E B O = . -'

n Latency
Selected plan ©1®
¢o

Execution Engine

Neo

1. We observe how a basic
guery optimizer handles a
sample workload.

Sample Expert ﬁ-ﬁ-.;\-_
Workload ‘ pUlAes » ¢ oo

Executed Plans

asiuadx3

.l.

Featurizer — &

_>
Prediction

;-<5_<:

Latenc
Selected plan EfQ- I Y

/\
(X

User Query

9ouauadx3
awnuny

Plan Search

Value Model

Execution Engine

Sample
Workload

User Query

0

Neo

"

: E | o R

: xpert e He § 13

! Optimizer oo 00 04 =

" Executed Pla 1 9

| 1

1 |

1 v 1
— > Featurizer ! .

] m

. — > X 15

1 O o 5 o 1=

] © Prediction | = = |13

] o @®© ® 10

1 > % a 1

1 («)) @ D 1

K< e (=

1 > \ljnn 1

1 ;cs ® g 1

: <+ .

l--------------_------ B B .. -'

n

Selected plan = ®

Latency

1)

Execution Engine

1. We observe how a basic
guery optimizer handles a
sample workload.

2. We train a combination of a
value model and a plan search
module to emulate the expert.

Sample
Workload

User Query

0

Expert EfQ ® EfQ ® EfQ
: ’ Optimizer ¢ ¢0 o0
' Executed Plans
:
1
—» Featurizer

Neo

asiuadx3

_>

Prediction

aouauadx3y
awnuny

Plan Search

Value Model

Latenc
Selegted plan Ebe I Y

1)

Execution Engine

1. We observe how a basic
guery optimizer handles a
sample workload.

2. We train a combination of a
value model and a plan search
module to emulate the expert.

3. We create a feedback loop
where we refine the value
model using real query latency
on user-submitted queries.

This Talk

* First, how to represent QO as an RL problem? (MDP)

* Neo Is designed around three principles:

— Find the right inductive bias
* Fully-connected neural networks? Never heard of ‘em.

- Learning from demonstration - Just an overview today.
* Watch masters. Emulate masters. Surpass masters.
-~ Learn embeddings < See paper for details. ©

* No histograms, no exception lists. Learned models.

Query Optimization as an MDP

* DB assumptions
- Binary query plan trees
- Non-distributed
- Fixed # join operators
- Equi-joins only

Query Optimization as an MDP

Actions available: - e

1. (R1, R2) Hash

2. (R1, R2) Sort

3. (R2, R3) Hash R2 APPEARS IN

4. (R2, R3) Sort R3 AT

5. (R3, R4) Hash

6. (R3, R4) Sort

7. (R4, R5) Hash il

8. (R4, R5) Sort ==

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

R1

R2

R3

R4

RS

ACTOR

APPEARS_IN

FILM

PRODUCED

COMPANY

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort
7. (R4, R5) Hash
8. (R4, R5) Sort

' N
Hash (» |

4

ACTOR APPEARS_IN

R3

R4

RS

FILM

PRODUCED

COMPANY

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash

R1
5. (R3, R4) Hash Hy\ R FILM
6. (R3, R4) Sort
() ACTOR APPEARS IN R3 PRODUCED
R4 COMPANY

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort
3. (R2, R3) Hash

R1
4. (RZ! R3) Sort Phag
5. (R3, R4) Hash Hy\ R FILM
6. (R3, R4) Sort
() ACTOR APPEARS IN R3 PRODUCED
R4 COMPANY

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

3. (R2, R3) Hash
4. (R2, R3) Sort
5. (R3, R4) Hash
6. (R3, R4) Sort

R2
Sort ‘::f/><1 \j
R1 ———
Hash (s FILM PRODUCED
ACTOR APPEARS IN

R3 COMPANY

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash

R2
2. (R1, R2) Sort < -
3. (R2, R3) Hash o .
/\
4. (R2, R3) Sort Hash (< FILM PRODUCED
ACTOR APPEARS_IN
R3 [COMPANY

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash

R2
2. (R1, R2) Sort < -
3. (R2, R3) Hash o .
/\
4. (R2, R3) Sort Hash (< FILM PRODUCED
ACTOR APPEARS_IN
R3 COMPANY

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:

Sort ()
1. (R1, R2) Hash @
2. (R1, R2) Sort Sort %«%PANY
o e . S
- (R2, R3) Sor Hash (¢ FILM PRODUCED

ACTOR APPEARS_IN

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

R1

Hash I!I

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash
2. (R1, R2) Sort

R1

Hash I!I

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Actions available:
1. (R1, R2) Hash

2. (R1, R2) Sort Hash f\;><1/

Sort [
Sot | COMPANY
Hash (s FILM PRODUCED
N 4
ACTOR APPEARS_IN

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Query Optimization as an MDP

Every previous state
had reward O

Now, we execute the

A
Hash (x|
o

program and record sort ()
the latency. o~
_ Sort [| COMPANY
Reward is -latency. ——
Hash (s FILM PRODUCED
ACTOR APPEARS_IN

(ACTORS » APPEARS _IN » FILM » PRODUCED »« COMPANY)

Deep Reinforcement Learning

- @B).C [:->C

TR @
f gt — -

Deep Reinforcement Learning
Supp. an oracle Q(-) which
maps each state to the best

: “ Deep reinforcement learning
possible latency achievable

>-_|:=: from that state.

Q:3

Deep Reinforcement Learning

Q:5

% Supp. an oracle Q(-) which

Q6 maps each state to the best
Q: 9 possible latency achievable

Deep reinforcement learning

>-_[:: from that state.
Q:3 :

Q:3

Deep Reinforcement Learning

Q:5

% Supp. an oracle Q(-) which

Q6 maps each state to the best
Q: 9 possible latency achievable

,-_[=">‘ from that state.
Q:3 : *

Deep reinforcement learning

Q:3

Deep Reinforcement Learning

Q:5
eB.C [:-+0
Q:5

Q: 6
Q:9

Deep reinforcement learning

Supp. an oracle Q(-) which
maps each state to the best
possible latency achievable
from that state.

Of course, there’s no Q(:).

... So we will learn an
approximation, Q

Deep Reinforcement Learning

Q: 10

oc [:-+0
Q:2 \

Q: 1

Deep reinforcement learning

N\

Approximation, Q.
1) initialize Q,

Deep Reinforcement Learning

D: 10 . .
Q-_>‘ Deep reinforcement learning
>*_[:__" Approximation, Q.
Q1 1) initialize Q,
o 2) play 1 round with Q,
Q:5
Q: 4
-@: 3 [:-+0

Q: 6

Deep Reinforcement Learning

Q: 10 . .
Deep reinforcement learning

[Gerc] D-*‘
Q: 2 _ Approximation, Q.

1) initialize O,
2) play 1 round with Q,

Deep Reinforcement Learning

Q: 10

Deep reinforcement learning

ol

Approximation, Q.

1) initialize O

2) play 1 round with Q,

3) use obs. to train Q,

eg., Q,((C(AB)) =6
Q,(A, (BC)) =6

Deep Reinforcement Learning

Q:3 . .
Deep reinforcement learning

- (B).C [:-—>‘
Q: 6 (Approximation, Q.

Q-6 1) initialize Q,

' 2) play 1 round with Q,

3) use obs. to train Q,

eg., O,((C(AB)) = 6
Q,(A. (BC) =6

4) play 1 round with Q,

Deep Reinforcement Learning

: 3

Deep reinforcement learning

ol

Approximation, Q.

1) initialize Q,

2) play 1 round with Q,

3) use obs. to train Q,

eg., Q,((C(AB)) = 6
Q,(A (BC) =6

4) play 1 round with Q,

Deep Reinforcement Learning

: 3

Deep reinforcement learning

ol

Q:6 \ Approximation, Q.
Q-6 1) initialize Q,
22 2) play 1 round with Q,
>_—|:=: 3) use obs. to train Q,
o O:2 eg., Q,((C(AB)) =6
o8 Q,(A. (BC)) = 6

D e - @ 5 repeat

Q:8
Q:9

Deep Reinforcement Learning

e Value Iteration

Initial Policy
(random) ¢
Learned Policy
@ ’@ Search over v,

Q Network
Trained from Experience

Inductive Bias

How should we approximate the Q function?

Option 1
- Flatten the state into a vector
- Use a fully connected neural network

Not really how deep learning becomes successful
Option 2

— Try to find the right inductive bias

— Build an intuitive network architecture

Tree Convolution

 How do we come up
with a good inductive
bias for query plans?

Tree Convolution

 How do we come up
with a good inductive
bias for query plans?

“Many stacked sort
operators — possibly
avoids a resort.”

Tree Convolution

 How do we come up
with a good inductive
bias for query plans?

Tree Convolution

 How do we come up
with a good inductive
bias for query plans?

“Hash then sort, 100%
requires rehash or
resort.”

“APPEARS _IN” Is

Tree ConVOIUtiOn presorted on disk —

should use a sort
P Instead of a hash.

* How do we come up sort ()
with a good inductive T
bias for query plans? —

Sort 1~ APPEARS_IN
/\\
Hash ;\><1 /f FILM
“Hash then sort, 100% COMPANY PRODUCED

requires rehash or
resort.”

“APPEARS IN”is
. d disk —
Tree Convolution Presorted on disk

Instead of a hash.

 How do we come up Sort (34"
with a good inductive -
bias for query plans? —
Sort w~ APPEARS_IN
/\\
Hash ;\><1 /‘j FILM

COMPANY PRODUCED

“Hash then sort, 100%
requires rehash or
resort.”

Experts examine local structure first,
then look to higher level features.

Tree Convolution

Detects a hash on top of a sort

Tree Convolution

Detects a hash on top of a sort

Tree Convolution

Detects a hash on top of a sort

Tree Convolution

Detects a hash on top of a sort

Tree Convolution

[2
~
L0]}
/\
0o || O

Detects a hash on top of a sort

Tree Convolution

[Hash | [2)
o~ o~
[Sort || C | Lo JLo
A J(B) Lo J[Lo |

Detects a hash on top of a sort

Tree Convolution

[Hash | (0)
o~ o~
[Sort |[C | L2 Jo
A (B) Lo JLo]

Detects a merge join with B on the right

Tree Convolution

* Like Image convolution, filter weights are:
- Automatically learned
- Stacked (to learn higher-level features)

 Efficiently vectorized on a GPU

Neo

Cost Prediction

A

Fully Connected Layers

+

Dynamic Pooling

Plan Tree

Tree Convolution

Value network architecture (used to approximate Q)

Random Policies

* DRL Is very sample

inefficient Initial Policy
(random)
- You have to play for a long @ Learned Policy
time before you get good. th Searchoverv,,
- Q Network
* In QO, do'“g worse Trained from Experience

takes longer!

— Cannot afford a random
initial policy.

Random Policies

* DRL Is very sample
Inefficient

- You have to play for a long
time before you get good.

* In QO, doing worse
takes longer!

- Cannot afford a random
initial policy.

* not the exact histogram... credit to Leis et al.

Query Plans

[EEY
0
®
)
o
>
Q.

a1nuIW T
sinoy QT
sAep 1
yuow T
JeahA T

Query Latency

Random Policies

* Heuristic query optimizers have
been around for a long time.

— Some are very simple, like
Selinger et al., ‘89

— This is the green line.

* So instead of starting from
random...

- Use a simple heuristic system to
bootstrap our policy.

* not the exact histogram... credit to Leis et al.

Query Plans

[EEY
0
®
)
o
>
Q.

a1nuIW T
sinoy QT

sAep 1
yuow T

Query Latency

JeahA T

Normalized Latency

O
%)

N
Ul

N

=
Ul

(-

-

Experiments

i

Neo (R-V_ectors)

i

Pbstg res ———-—

0 20 40 60 80

Iterations

100

1 = performance of
PG optimizer

Neo trained with PG
optimizer as expert
on small sample
beforehand.

Normalized Latency

—
%)

=
Ul

(-

-

Experiments

T T i

Pbstgres ———-
Neo (R-V_ectors) |

\\\ -]

Iterations

1 = performance of
PG optimizer

Neo trained with PG
optimizer as expert
on small sample
beforehand.

On test queries,
Neo outperforms

0 20 40 60 80 100 PG 15-25%.

2.5
g 2
9
815
©
¢
= 1
S
S 0.5

0

Experiments

| IOracIe —_—
PostgreSQL on Oracle —-—-- |
NeQ (Row Vectors) |
0 20 40 60 80

lterations

100

Black (1): performance of
Oracle query optimizer

2.5
g 2
9
815
©
¢
= 1
S
S 0.5

0

Experiments

| IOracIe —_—
PostgreSQL on Oracle —-—-- |
NeQ (Row Vectors) |
0 20 40 60 80

100
Iterations

Black (1): performance of
Oracle query optimizer

Gray (1.7): performance of
PostgreSQL plans executed
on Oracle

N
Ul

N

Normalized Latency

Experiments

1.5F

I

‘Oracle
PostgreSQL on Oracle —-—--
Neo (Row Vectors)

1

i

420 60
Iterations

80

100

Black (1): performance of
Oracle query optimizer

Green (1.7): performance of
PostgreSQL plans executed
on Oracle

Red: Performance of Neo
over time

ey
1 981
41 €82
1 49&&
1 B5L

Q6&
BEE
J6E
JEE
J8E
61
B/Z
ar

+qZE
*qP e

L

I T

i

#
L

oh

Relative -::qst]

Workload cost I

4 B61
1 251
1 +AL2
1 Q€€
L1
271
JZZ
PEE
«B9Z
qoZ
9z

Experiments

q.1

EDZ

= = = = = = = =

(5) ._DmEm”_mn_n_ E_H_E CRIVETET |

Normalized Frequency

Normalized Frequency

=

Experiments

=
un

PG <=3 jorns
 Error=0 —
Error =2 ——
Error = 5 —_—
-2 -15 -1 -0.5 0 0.5 1 1.5 2
Value Network Output
True card <=3 Jorns
2
Error = 0 _—
Error =2 ——
151 Error =5 ——
1 .
0 - - .
-2 -15 -1 -0.5 0 0.5 1 1.5 2

Value Network Output

Normalized Frequency

Normalized Frequency

PG > 3 Jorns
2 T T
: Error =0 ——
Error =2 ——
15} Error =5 ———
1 .
0.5
0 : : . :
-2 -15 -1 -05 0 0.5 1 1.5 2
Value Network Output
True card > 3 Jorns
2 T
Error = 0 ——
Error =2 ——
15| Error =5 ——— 1
1 -
0.5
0 : —
-15 -1 -05 0 0.5 1 1.5 2

Value Network Output

Conclusions

* Neo: first learned end-to-end optimizer

* Achieves performance on-par with SOTA commercial
guery optimizers
e Limitations & future work
- Depends on an expert
- Fixed schema
— Concurrent queries

That's all!

* Neo: A Learned Query Optimizer
* A purely-learned policy with SOTA performance
« Me: Ryan Marcus (ryanmarcus@csail .mit .edu)

« Twitter: @RyanMarcus (web: http://rm.cab)
e These slides: http://rm.cab/neovldbl9
« Paper: http://rm.cab/neo

mailto:ryanmarcus@csail.mit.edu
http://rm.cab/
http://rm.cab/neovldb19
http://rm.cab/neo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

